円周上に3つのポイントがあります。
pt A = (A.x, A.y);
pt B = (B.x, B.y);
pt C = (C.x, C.y);
円の中心を計算するにはどうすればよいですか?
処理(Java)での実装。
私は答えを見つけ、実用的なソリューションを実装しました:
pt circleCenter(pt A, pt B, pt C) {
float yDelta_a = B.y - A.y;
float xDelta_a = B.x - A.x;
float yDelta_b = C.y - B.y;
float xDelta_b = C.x - B.x;
pt center = P(0,0);
float aSlope = yDelta_a/xDelta_a;
float bSlope = yDelta_b/xDelta_b;
center.x = (aSlope*bSlope*(A.y - C.y) + bSlope*(A.x + B.x)
- aSlope*(B.x+C.x) )/(2* (bSlope-aSlope) );
center.y = -1*(center.x - (A.x+B.x)/2)/aSlope + (A.y+B.y)/2;
return center;
}
かなり詳細な計算になる場合があります。ここに簡単なステップバイステップがあります: http://paulbourke.net/geometry/circlesphere/ 。円の方程式が得られたら、HとKを含む形式で簡単に配置できます。点(h、k)が中心になります。
(方程式に到達するには、リンクを少し下にスクロールします)
これが私のJavaポートです。非常にエレガントなIllegalArgumentException
で行列式が消えたときにエラー条件を回避します。 "ポイントが2つ離れている"または "ポイントが嘘である"への対処方法また、これにより、交差するスロープアプローチでは実行できない半径が計算されます(例外的な条件にも対応します)。
public class CircleThree
{
static final double TOL = 0.0000001;
public static Circle circleFromPoints(final Point p1, final Point p2, final Point p3)
{
final double offset = Math.pow(p2.x,2) + Math.pow(p2.y,2);
final double bc = ( Math.pow(p1.x,2) + Math.pow(p1.y,2) - offset )/2.0;
final double cd = (offset - Math.pow(p3.x, 2) - Math.pow(p3.y, 2))/2.0;
final double det = (p1.x - p2.x) * (p2.y - p3.y) - (p2.x - p3.x)* (p1.y - p2.y);
if (Math.abs(det) < TOL) { throw new IllegalArgumentException("Yeah, lazy."); }
final double idet = 1/det;
final double centerx = (bc * (p2.y - p3.y) - cd * (p1.y - p2.y)) * idet;
final double centery = (cd * (p1.x - p2.x) - bc * (p2.x - p3.x)) * idet;
final double radius =
Math.sqrt( Math.pow(p2.x - centerx,2) + Math.pow(p2.y-centery,2));
return new Circle(new Point(centerx,centery),radius);
}
static class Circle
{
final Point center;
final double radius;
public Circle(Point center, double radius)
{
this.center = center; this.radius = radius;
}
@Override
public String toString()
{
return new StringBuilder().append("Center= ").append(center).append(", r=").append(radius).toString();
}
}
static class Point
{
final double x,y;
public Point(double x, double y)
{
this.x = x; this.y = y;
}
@Override
public String toString()
{
return "("+x+","+y+")";
}
}
public static void main(String[] args)
{
Point p1 = new Point(0.0,1.0);
Point p2 = new Point(1.0,0.0);
Point p3 = new Point(2.0,1.0);
Circle c = circleFromPoints(p1, p2, p3);
System.out.println(c);
}
}
参照 ここからのアルゴリズム :
void circle_vvv(circle *c)
{
c->center.w = 1.0;
vertex *v1 = (vertex *)c->c.p1;
vertex *v2 = (vertex *)c->c.p2;
vertex *v3 = (vertex *)c->c.p3;
float bx = v1->xw; float by = v1->yw;
float cx = v2->xw; float cy = v2->yw;
float dx = v3->xw; float dy = v3->yw;
float temp = cx*cx+cy*cy;
float bc = (bx*bx + by*by - temp)/2.0;
float cd = (temp - dx*dx - dy*dy)/2.0;
float det = (bx-cx)*(cy-dy)-(cx-dx)*(by-cy);
if (fabs(det) < 1.0e-6) {
c->center.xw = c->center.yw = 1.0;
c->center.w = 0.0;
c->v1 = *v1;
c->v2 = *v2;
c->v3 = *v3;
return;
}
det = 1/det;
c->center.xw = (bc*(cy-dy)-cd*(by-cy))*det;
c->center.yw = ((bx-cx)*cd-(cx-dx)*bc)*det;
cx = c->center.xw; cy = c->center.yw;
c->radius = sqrt((cx-bx)*(cx-bx)+(cy-by)*(cy-by));
}
この質問にカーソルを合わせたとき、私は同様のアルゴリズムを探していました。コードを取得しましたが、勾配のいずれかが0または無限大の場合(xDelta_aまたはxDelta_bが0の場合はtrueになる可能性があります)、これは機能しないことがわかりました。
アルゴリズムを修正しましたが、これが私のコードです。注:私はObjective-Cプログラミング言語を使用して、ポイント値の初期化のコードを変更しているだけなので、それが間違っている場合は、Javaで作業しているプログラマが修正できると確信しています。ただし、ロジック、すべて同じです(ゴッドブレスアルゴリズム!! :))
私自身の機能テストに関する限り、問題なく動作します。ロジックが間違っている場合はいつでもお知らせください。
pt circleCenter(pt A, pt B, pt C) {
float yDelta_a = B.y - A.y;
float xDelta_a = B.x - A.x;
float yDelta_b = C.y - B.y;
float xDelta_b = C.x - B.x;
pt center = P(0,0);
float aSlope = yDelta_a/xDelta_a;
float bSlope = yDelta_b/xDelta_b;
pt AB_Mid = P((A.x+B.x)/2, (A.y+B.y)/2);
pt BC_Mid = P((B.x+C.x)/2, (B.y+C.y)/2);
if(yDelta_a == 0) //aSlope == 0
{
center.x = AB_Mid.x;
if (xDelta_b == 0) //bSlope == INFINITY
{
center.y = BC_Mid.y;
}
else
{
center.y = BC_Mid.y + (BC_Mid.x-center.x)/bSlope;
}
}
else if (yDelta_b == 0) //bSlope == 0
{
center.x = BC_Mid.x;
if (xDelta_a == 0) //aSlope == INFINITY
{
center.y = AB_Mid.y;
}
else
{
center.y = AB_Mid.y + (AB_Mid.x-center.x)/aSlope;
}
}
else if (xDelta_a == 0) //aSlope == INFINITY
{
center.y = AB_Mid.y;
center.x = bSlope*(BC_Mid.y-center.y) + BC_Mid.x;
}
else if (xDelta_b == 0) //bSlope == INFINITY
{
center.y = BC_Mid.y;
center.x = aSlope*(AB_Mid.y-center.y) + AB_Mid.x;
}
else
{
center.x = (aSlope*bSlope*(AB_Mid.y-BC_Mid.y) - aSlope*BC_Mid.x + bSlope*AB_Mid.x)/(bSlope-aSlope);
center.y = AB_Mid.y - (center.x - AB_Mid.x)/aSlope;
}
return center;
}
public Vector2 CarculateCircleCenter(Vector2 p1, Vector2 p2, Vector2 p3)
{
if (
p2.x - p1.x == 0 ||
p3.x - p2.x == 0 ||
p2.y - p1.y == 0 ||
p3.y - p2.y == 0
) return null;
Vector2 center = new Vector2();
float ma = (p2.y - p1.y) / (p2.x - p1.x);
float mb = (p3.y - p2.y) / (p3.x - p2.x);
center.x = (ma * mb * (p1.y - p3.y) + mb * (p1.x - p2.x) - ma * (p2.x + p3.x)) / (2 * (mb - ma));
center.y = (-1 / ma) * (center.x - (p1.x + p2.x) * 0.5) + (p1.y + p2.y) * 0.5;
return center;
}
回答が遅れてすみません。勾配が無限になるため、2つの点が垂直線を形成する場合、「勾配」を使用するすべてのソリューションは失敗します。
常に正しく機能する2019年のシンプルで堅牢なソリューションを次に示します。
public static boolean circleCenter(double[] p1, double[] p2, double[] p3, double[] center) {
double ax = (p1[0] + p2[0]) / 2;
double ay = (p1[1] + p2[1]) / 2;
double ux = (p1[1] - p2[1]);
double uy = (p2[0] - p1[0]);
double bx = (p2[0] + p3[0]) / 2;
double by = (p2[1] + p3[1]) / 2;
double vx = (p2[1] - p3[1]);
double vy = (p3[0] - p2[0]);
double dx = ax - bx;
double dy = ay - by;
double vu = vx * uy - vy * ux;
if (vu == 0)
return false; // Points are collinear, so no unique solution
double g = (dx * uy - dy * ux) / vu;
center[0] = bx + g * vx;
center[1] = by + g * vy;
return true;
}
上記のコードは、3つの点が同一線上にある場合にのみ「false」を返します。