web-dev-qa-db-ja.com

線形計画法の動的計画法ソリューションを理解するにはどうすればよいですか?

線形計画法の問題に対する動的計画法の解決策を理解するのに苦労しています。 アルゴリズム設計マニュアル を読んでいます。問題はセクション8.5で説明されています。このセクションを何度も読んだのですが、うまくいきません。説明が悪いと思いますが(今まで読んだ方がずっと良かったです)、別の説明を探すほど問題を理解できていません。より良い説明へのリンクを歓迎します!

本に似たテキストのページを見つけました(おそらく本の初版から): パーティションの問題

最初の質問:本の例では、パーティションは最小から最大の順に並べられています。これは単なる偶然ですか?私が見ることができることから、要素の順序はアルゴリズムにとって重要ではありません。

これは再帰についての私の理解です:

次のシーケンスを使用して、4に分割してみましょう。

{S1...Sn} =  100   150   200   250   300   350   400   450   500
k = 4

2番目の質問:再帰がどのように始まると思いますか-正しく理解しましたか?

最初の再帰は次のとおりです。

100   150   200   250   300   350   400   450 | 500 //3 partition to go
100   150   200   250   300   350   400 | 450 | 500 //2 partition to go 
100   150   200   250   300   350 | 400 | 450 | 500 //1 partition to go
100   150   200   250   300 | 350 | 400 | 450 | 500 //done

2番目の再帰は次のとおりです。

100   150   200   250   300   350   400   450 | 500 //3 partition to go
100   150   200   250   300   350   400 | 450 | 500 //2 partition to go 
100   150   200   250   300   350 | 400 | 450 | 500 //1 partition to go
100   150   200   250 | 300   350 | 400 | 450 | 500 //done

3番目の再帰は次のとおりです。

100   150   200   250   300   350   400   450 | 500 //3 partition to go
100   150   200   250   300   350   400 | 450 | 500 //2 partition to go 
100   150   200   250   300   350 | 400 | 450 | 500 //1 partition to go
100   150   200 | 250   300   350 | 400 | 450 | 500 //done

4番目の再帰は次のとおりです。

100   150   200   250   300   350   400   450 | 500 //3 partition to go
100   150   200   250   300   350   400 | 450 | 500 //2 partition to go 
100   150   200   250   300   350 | 400 | 450 | 500 //1 partition to go
100   150 | 200   250   300   350 | 400 | 450 | 500 //done

5番目の再帰は次のとおりです。

100   150   200   250   300   350   400   450 | 500 //3 partition to go
100   150   200   250   300   350   400 | 450 | 500 //2 partition to go 
100   150   200   250   300   350 | 400 | 450 | 500 //1 partition to go
100 | 150   200   250   300   350 | 400 | 450 | 500 //done

6番目の再帰は次のとおりです。

100   150   200   250   300   350   400   450 | 500 //3 partition to go
100   150   200   250   300   350   400 | 450 | 500 //2 partition to go 
100   150   200   250   300 | 350   400 | 450 | 500 //1 partition to go
100   150   200   250 | 300 | 350   400 | 450 | 500 //done

7番目の再帰は次のとおりです。

100   150   200   250   300   350   400   450 | 500 //3 partition to go
100   150   200   250   300   350   400 | 450 | 500 //2 partition to go 
100   150   200   250   300 | 350   400 | 450 | 500 //1 partition to go
100   150   200 | 250   300 | 350   400 | 450 | 500 //done

8番目の再帰は次のとおりです。

100   150   200   250   300   350   400   450 | 500 //3 partition to go
100   150   200   250   300   350   400 | 450 | 500 //2 partition to go 
100   150   200   250   300 | 350   400 | 450 | 500 //1 partition to go
100   150 | 200   250   300 | 350   400 | 450 | 500 //done

9番目の再帰は次のとおりです。

100   150   200   250   300   350   400   450 | 500 //3 partition to go
100   150   200   250   300   350   400 | 450 | 500 //2 partition to go 
100   150   200   250   300 | 350   400 | 450 | 500 //1 partition to go
100 | 150   200   250   300 | 350   400 | 450 | 500 //done

等...

本に記載されているコードは次のとおりです。

partition(int s[], int n, int k)
{
    int m[MAXN+1][MAXK+1];                  /* DP table for values */
    int d[MAXN+1][MAXK+1];                  /* DP table for dividers */ 
    int p[MAXN+1];                          /* prefix sums array */
    int cost;                               /* test split cost */
    int i,j,x;                              /* counters */

    p[0] = 0;                               /* construct prefix sums */
    for (i=1; i<=n; i++) p[i]=p[i-1]+s[i];

    for (i=1; i<=n; i++) m[i][3] = p[i];    /* initialize boundaries */
    for (j=1; j<=k; j++) m[1][j] = s[1];


    for (i=2; i<=n; i++)                    /* evaluate main recurrence */
        for (j=2; j<=k; j++) {
            m[i][j] = MAXINT;
            for (x=1; x<=(i-1); x++) {
                cost = max(m[x][j-1], p[i]-p[x]);
                if (m[i][j] > cost) {
                    m[i][j] = cost;
                    d[i][j] = x;
                }
            }
        }

    reconstruct_partition(s,d,n,k);         /* print book partition */
}

アルゴリズムに関する質問:

  1. mdにはどのような値が格納されていますか?
  2. 「コスト」とはどういう意味ですか?単にパーティション内の要素値の合計ですか?それとも、もっと微妙な意味がありますか?
32
Benedict Cohen

この本のアルゴリズムの説明には小さな間違いがあることに注意してください。 正誤表 で「(*)ページ297」というテキストを探してください。

あなたの質問について:

  1. いいえ、アイテムを並べ替える必要はなく、連続しているだけです(つまり、アイテムを並べ替えることはできません)
  2. アルゴリズムを視覚化する最も簡単な方法は、図8.8の右端の表をガイドとして使用して、reconstruct_partitionプロシージャを手動でトレースすることだと思います。
  3. この本では、m [i] [j]は「{s1、s2、...、si}のすべての分割で可能な最小コスト」であると述べています。ここで、パーティションのコストは、つまり、用語の乱用を許せば、それは「合計の最小最大値」です。一方、d [i] [j]は、作成に使用されたインデックス位置を格納します。前に定義した特定のペアi、jのパーティション
  4. 「コスト」の意味については、前の回答を参照してください

編集:

これが線形分割アルゴリズムの私の実装です。これはSkienaのアルゴリズムに基づいていますが、Pythonの方法です。パーティションのリストを返します。

from operator import itemgetter

def linear_partition(seq, k):
    if k <= 0:
        return []
    n = len(seq) - 1
    if k > n:
        return map(lambda x: [x], seq)
    table, solution = linear_partition_table(seq, k)
    k, ans = k-2, []
    while k >= 0:
        ans = [[seq[i] for i in xrange(solution[n-1][k]+1, n+1)]] + ans
        n, k = solution[n-1][k], k-1
    return [[seq[i] for i in xrange(0, n+1)]] + ans

def linear_partition_table(seq, k):
    n = len(seq)
    table = [[0] * k for x in xrange(n)]
    solution = [[0] * (k-1) for x in xrange(n-1)]
    for i in xrange(n):
        table[i][0] = seq[i] + (table[i-1][0] if i else 0)
    for j in xrange(k):
        table[0][j] = seq[0]
    for i in xrange(1, n):
        for j in xrange(1, k):
            table[i][j], solution[i-1][j-1] = min(
                ((max(table[x][j-1], table[i][0]-table[x][0]), x) for x in xrange(i)),
                key=itemgetter(0))
    return (table, solution)
36
Óscar López

PHPにÓscarLópezアルゴリズムを実装しました。いつでもお気軽にご利用ください。

 /**
 * Example: linear_partition([9,2,6,3,8,5,8,1,7,3,4], 3) => [[9,2,6,3],[8,5,8],[1,7,3,4]]
 * @param array $seq
 * @param int $k
 * @return array
 */
protected function linear_partition(array $seq, $k)
{
    if ($k <= 0) {
        return array();
    }

    $n = count($seq) - 1;
    if ($k > $n) {
        return array_map(function ($x) {
            return array($x);
        }, $seq);
    }

    list($table, $solution) = $this->linear_partition_table($seq, $k);
    $k = $k - 2;
    $ans = array();

    while ($k >= 0) {
        $ans = array_merge(array(array_slice($seq, $solution[$n - 1][$k] + 1, $n - $solution[$n - 1][$k])), $ans);
        $n = $solution[$n - 1][$k];
        $k = $k - 1;
    }

    return array_merge(array(array_slice($seq, 0, $n + 1)), $ans);
}

protected function linear_partition_table($seq, $k)
{
    $n = count($seq);

    $table = array_fill(0, $n, array_fill(0, $k, 0));
    $solution = array_fill(0, $n - 1, array_fill(0, $k - 1, 0));

    for ($i = 0; $i < $n; $i++) {
        $table[$i][0] = $seq[$i] + ($i ? $table[$i - 1][0] : 0);
    }

    for ($j = 0; $j < $k; $j++) {
        $table[0][$j] = $seq[0];
    }

    for ($i = 1; $i < $n; $i++) {
        for ($j = 1; $j < $k; $j++) {
            $current_min = null;
            $minx = PHP_INT_MAX;

            for ($x = 0; $x < $i; $x++) {
                $cost = max($table[$x][$j - 1], $table[$i][0] - $table[$x][0]);
                if ($current_min === null || $cost < $current_min) {
                    $current_min = $cost;
                    $minx = $x;
                }
            }

            $table[$i][$j] = $current_min;
            $solution[$i - 1][$j - 1] = $minx;
        }
    }

    return array($table, $solution);
}
3
WASD42

以下は、pythonのSkiennaの線形分割アルゴリズムの変更された実装であり、回答自体を除いて最後のk列の値を計算しません:M [N] [K](セルの計算は前に)

入力{1,2,3,4,5,6,7,8,9}(本のSkiennaの例で使用)に対するテストでは、わずかに異なる行列Mが生成されます(上記の変更が与えられた場合)が、最終値は正しく返されます結果(この例では、sのk範囲への最小コスト分割は17であり、行列Dを使用して、この最適化につながる除算器の位置のリストを出力します)。

import math


def partition(s, k):
    # compute prefix sums

    n = len(s)
    p = [0 for _ in range(n)]
    m = [[0 for _ in range(k)] for _ in range(n)]
    d = [[0 for _ in range(k)] for _ in range(n)]

    for i in range(n):
        p[i] = p[i-1] + s[i]

    # initialize boundary conditions
    for i in range(n):
        m[i][0] = p[i]

    for i in range(k):
        m[0][i] = s[0]

    # Evaluate main recurrence
    for i in range(1, n):
        """
          omit calculating the last M's column cells 
          except for the sought minimum cost M[N][K]
        """
        if i != n - 1:
            jlen = k - 1
        else:
            jlen = k

        for j in range(1, jlen):

            """
            - computes the minimum-cost partitioning  of the set {S1,S2,.., Si} into j partitions .
            - this part should be investigated more closely .

            """
            #
            m[i][j] = math.inf

            # This loop needs to be traced to understand it better
            for x in range(i):
                sup = max(m[x][j-1], p[i] - p[x])
                if m[i][j] > sup:
                    m[i][j] = sup
                    # record which divider position was required to achieve the value s
                    d[i][j] = x+1

    return s, d, n, k


def reconstruct_partition(S, D, N, K):
    if K == 0:
        for i in range(N):
            print(S[i], end="_")
        print(" | ", end="")
    else:
        reconstruct_partition(S, D, D[N-1][K-1], K-1)
        for i in range(D[N-1][K-1], N):
            print(S[i], end="_")
        print(" | ", end="")

# MAIN PROGRAM

S, D, N, K = partition([1, 2, 3, 4, 5, 6, 7, 8, 9], 3)

reconstruct_partition(S, D, N, K)
1
mabbessi