キーとして整数値を持つbstが与えられた場合、bstでそのキーに最も近いノードを見つけるにはどうすればよいですか? BSTは、ノードのオブジェクト(Java)を使用して表されます。最も近いのはたとえば4,5,9で、キーが6の場合は5を返します。
要素を見つけるのと同じようにツリーをトラバースします。その間、キーに最も近い値を記録します。キー自体のノードが見つからなかった場合は、記録された値を返します。
したがって、次のツリーでキー3
を探している場合、一致するものが見つからずにノード6
に到達しますが、これが最も近いキーであるため、記録された値は2
になります。トラバースしたすべてのノードの(2
、7
、6
)。
2
1 7
6 8
トラバースにはO(n)時間がかかります。この再帰コードのように、上から下に進むことができますか?
Tnode * closestBST(Tnode * root, int val){
if(root->val == val)
return root;
if(val < root->val){
if(!root->left)
return root;
Tnode * p = closestBST(root->left, val);
return abs(p->val-val) > abs(root->val-val) ? root : p;
}else{
if(!root->right)
return root;
Tnode * p = closestBST(root->right, val);
return abs(p->val-val) > abs(root->val-val) ? root : p;
}
return null;
}
Pythonの再帰的ソリューションは次のとおりです。
def searchForClosestNodeHelper(root, val, closestNode):
if root is None:
return closestNode
if root.val == val:
return root
if closestNode is None or abs(root.val - val) < abs(closestNode.val - val):
closestNode = root
if val < root.val:
return searchForClosestNodeHelper(root.left, val, closestNode)
else:
return searchForClosestNodeHelper(root.right, val, closestNode)
def searchForClosestNode(root, val):
return searchForClosestNodeHelper(root, val, None)
O(log * n *)時間で解くことができます。
このアルゴリズムは、次のC++コードで実装できます。
BinaryTreeNode* getClosestNode(BinaryTreeNode* pRoot, int value)
{
BinaryTreeNode* pClosest = NULL;
int minDistance = 0x7FFFFFFF;
BinaryTreeNode* pNode = pRoot;
while(pNode != NULL){
int distance = abs(pNode->m_nValue - value);
if(distance < minDistance){
minDistance = distance;
pClosest = pNode;
}
if(distance == 0)
break;
if(pNode->m_nValue > value)
pNode = pNode->m_pLeft;
else if(pNode->m_nValue < value)
pNode = pNode->m_pRight;
}
return pClosest;
}
詳細については、 私のブログ にアクセスしてください。
「左右トラバーサルと最も近いものを見つける」というアプローチの問題は、BSTを作成するために要素が入力された順序に依存することです。 11でBSTシーケンス22、15、16、6、14、3、1、90を検索すると、上記のメソッドは15を返しますが、正解は14です。唯一の方法は、再帰を使用してすべてのノードをトラバースすることです。再帰関数の結果として最も近いものを返します。これにより、最も近い値が得られます
以下は、私が持っているさまざまなサンプルで動作します。
public Node findNearest(Node root, int k) {
if (root == null) {
return null;
}
int minDiff = 0;
Node minAt = root;
minDiff = Math.abs(k - root.data);
while (root != null) {
if (k == root.data) {
return root;
}
if (k < root.data) {
minAt = updateMin(root, k, minDiff, minAt);
root = root.left;
} else if (k > root.data) {
minAt = updateMin(root, k, minDiff, minAt);
root = root.right;
}
}
return minAt;
}
private Node updateMin(Node root, int k, int minDiff, Node minAt) {
int curDif;
curDif = Math.abs(k - root.data);
if (curDif < minDiff) {
minAt = root;
}
return minAt;
}
これは、QueueとArrayListを使用して実行できます。キューは、ツリーで幅優先探索を実行するために使用されます。 ArrayListは、ツリーの要素を幅優先で格納するために使用されます。これは同じものを実装するためのコードです
Queue queue = new LinkedList();
ArrayList list = new ArrayList();
int i =0;
public Node findNextRightNode(Node root,int key)
{
System.out.print("The breadth first search on Tree : \t");
if(root == null)
return null;
queue.clear();
queue.add(root);
while(!queue.isEmpty() )
{
Node node = (Node)queue.remove();
System.out.print(node.data + " ");
list.add(node);
if(node.left != null) queue.add(node.left);
if(node.right !=null) queue.add(node.right);
}
Iterator iter = list.iterator();
while(iter.hasNext())
{
if(((Node)iter.next()).data == key)
{
return ((Node)iter.next());
}
}
return null;
}
これは、BSTで最も近い要素を見つけるための完全なJavaコードです。
package binarytree;
class BSTNode {
BSTNode left,right;
int data;
public BSTNode(int data) {
this.data = data;
this.left = this.right = null;
}
}
class BST {
BSTNode root;
public static BST createBST() {
BST bst = new BST();
bst.root = new BSTNode(9);
bst.root.left = new BSTNode(4);
bst.root.right = new BSTNode(17);
bst.root.left.left = new BSTNode(3);
bst.root.left.right= new BSTNode(6);
bst.root.left.right.left= new BSTNode(5);
bst.root.left.right.right= new BSTNode(7);
bst.root.right.right = new BSTNode(22);
bst.root.right.right.left = new BSTNode(20);
return bst;
}
}
public class ClosestElementInBST {
public static void main(String[] args) {
BST bst = BST.createBST();
int target = 18;
BSTNode currentClosest = null;
BSTNode closestNode = findClosestElement(bst.root, target, currentClosest);
if(closestNode != null) {
System.out.println("Found closest node: " + closestNode.data);
}
else {
System.out.println("Couldn't find closest node.");
}
}
private static BSTNode findClosestElement(BSTNode node, int target, BSTNode currentClosest) {
if(node == null) return currentClosest;
if(currentClosest == null ||
(currentClosest != null && (Math.abs(currentClosest.data - target) > Math.abs(node.data - target)))) {
currentClosest = node;
}
if(node.data == target) return node;
else if(target < node.data) {
return findClosestElement(node.left, target, currentClosest);
}
else { //target > node.data
currentClosest = node;
return findClosestElement(node.right, target, currentClosest);
}
}
}
これがJavaの作業ソリューションであり、BSTと追加の整数の特性を使用して最小の差を格納します。
public class ClosestValueBinaryTree {
static int closestValue;
public static void closestValueBST(Node22 node, int target) {
if (node == null) {
return;
}
if (node.data - target == 0) {
closestValue = node.data;
return;
}
if (Math.abs(node.data - target) < Math.abs(closestValue - target)) {
closestValue = node.data;
}
if (node.data - target < 0) {
closestValueBST(node.right, target);
} else {
closestValueBST(node.left, target);
}
}
}
実行時の複雑さ-O(logN)
時空間計算量-O(1)
void closestNode(Node root, int k , Node result) {
if(root == null)
{
return; //currently result is null , so it will be the result
}
if(result == null || Math.abs(root.data - k) < Math.abs(result.data - k) )
{
result == root;
}
if(k < root.data)
{
closestNode(root.left, k, result)
}
else
{
closestNode(root.right, k, result);
}
}