ポイントAからBに向かう線があります。両方のポイントの(x、y)があります。 Bを中心とする長方形と、長方形の幅と高さもあります。
長方形と交差するライン内のポイントを見つける必要があります。その点の(x、y)を与える式はありますか?
点Aは常に長方形の外側にあり、点Bは常に長方形の中心にあります
長方形が軸に揃えられていると仮定すると、これは物事を非常に簡単にします:
線の勾配はs =(Ay-By)/(Ax-Bx)です。
Edgeが交差すると、1つの座標がわかります。ヒットするEdgeに応じて、x = Bx±w/2またはy = By±h/2になります。他の座標は、y = By + s * w/2またはx = Bx +(h/2)/ sで与えられます。
Graphics Gems -これはグラフィックスの古典的なルーチンセットであり、必要なアルゴリズムの多くが含まれています。それはCであり、少し時代遅れですが、アルゴリズムはまだ輝いており、他の言語に移行するのは簡単なはずです。
現在の問題では、長方形の4本の線を作成し、指定した線と交差する線を確認します。
/**
* Finds the intersection point between
* * the rectangle
* with parallel sides to the x and y axes
* * the half-line pointing towards (x,y)
* originating from the middle of the rectangle
*
* Note: the function works given min[XY] <= max[XY],
* even though minY may not be the "top" of the rectangle
* because the coordinate system is flipped.
* Note: if the input is inside the rectangle,
* the line segment wouldn't have an intersection with the rectangle,
* but the projected half-line does.
* Warning: passing in the middle of the rectangle will return the midpoint itself
* there are infinitely many half-lines projected in all directions,
* so let's just shortcut to midpoint (GIGO).
*
* @param x:Number x coordinate of point to build the half-line from
* @param y:Number y coordinate of point to build the half-line from
* @param minX:Number the "left" side of the rectangle
* @param minY:Number the "top" side of the rectangle
* @param maxX:Number the "right" side of the rectangle
* @param maxY:Number the "bottom" side of the rectangle
* @param validate:boolean (optional) whether to treat point inside the rect as error
* @return an object with x and y members for the intersection
* @throws if validate == true and (x,y) is inside the rectangle
* @author TWiStErRob
* @licence Dual CC0/WTFPL/Unlicence, whatever floats your boat
* @see <a href="http://stackoverflow.com/a/31254199/253468">source</a>
* @see <a href="http://stackoverflow.com/a/18292964/253468">based on</a>
*/
function pointOnRect(x, y, minX, minY, maxX, maxY, validate) {
//assert minX <= maxX;
//assert minY <= maxY;
if (validate && (minX < x && x < maxX) && (minY < y && y < maxY))
throw "Point " + [x,y] + "cannot be inside "
+ "the rectangle: " + [minX, minY] + " - " + [maxX, maxY] + ".";
var midX = (minX + maxX) / 2;
var midY = (minY + maxY) / 2;
// if (midX - x == 0) -> m == ±Inf -> minYx/maxYx == x (because value / ±Inf = ±0)
var m = (midY - y) / (midX - x);
if (x <= midX) { // check "left" side
var minXy = m * (minX - x) + y;
if (minY <= minXy && minXy <= maxY)
return {x: minX, y: minXy};
}
if (x >= midX) { // check "right" side
var maxXy = m * (maxX - x) + y;
if (minY <= maxXy && maxXy <= maxY)
return {x: maxX, y: maxXy};
}
if (y <= midY) { // check "top" side
var minYx = (minY - y) / m + x;
if (minX <= minYx && minYx <= maxX)
return {x: minYx, y: minY};
}
if (y >= midY) { // check "bottom" side
var maxYx = (maxY - y) / m + x;
if (minX <= maxYx && maxYx <= maxX)
return {x: maxYx, y: maxY};
}
// Edge case when finding midpoint intersection: m = 0/0 = NaN
if (x === midX && y === midY) return {x: x, y: y};
// Should never happen :) If it does, please tell me!
throw "Cannot find intersection for " + [x,y]
+ " inside rectangle " + [minX, minY] + " - " + [maxX, maxY] + ".";
}
(function tests() {
var left = 100, right = 200, top = 50, bottom = 150; // a square, really
var hMiddle = (left + right) / 2, vMiddle = (top + bottom) / 2;
function intersectTestRect(x, y) { return pointOnRect(x,y, left,top, right,bottom, true); }
function intersectTestRectNoValidation(x, y) { return pointOnRect(x,y, left,top, right,bottom, false); }
function checkTestRect(x, y) { return function() { return pointOnRect(x,y, left,top, right,bottom, true); }; }
QUnit.test("intersects left side", function(assert) {
var leftOfRect = 0, closerLeftOfRect = 25;
assert.deepEqual(intersectTestRect(leftOfRect, 25), {x:left, y:75}, "point above top");
assert.deepEqual(intersectTestRect(closerLeftOfRect, top), {x:left, y:80}, "point in line with top");
assert.deepEqual(intersectTestRect(leftOfRect, 70), {x:left, y:90}, "point above middle");
assert.deepEqual(intersectTestRect(leftOfRect, vMiddle), {x:left, y:100}, "point exact middle");
assert.deepEqual(intersectTestRect(leftOfRect, 130), {x:left, y:110}, "point below middle");
assert.deepEqual(intersectTestRect(closerLeftOfRect, bottom), {x:left, y:120}, "point in line with bottom");
assert.deepEqual(intersectTestRect(leftOfRect, 175), {x:left, y:125}, "point below bottom");
});
QUnit.test("intersects right side", function(assert) {
var rightOfRect = 300, closerRightOfRect = 250;
assert.deepEqual(intersectTestRect(rightOfRect, 25), {x:right, y:75}, "point above top");
assert.deepEqual(intersectTestRect(closerRightOfRect, top), {x:right, y:75}, "point in line with top");
assert.deepEqual(intersectTestRect(rightOfRect, 70), {x:right, y:90}, "point above middle");
assert.deepEqual(intersectTestRect(rightOfRect, vMiddle), {x:right, y:100}, "point exact middle");
assert.deepEqual(intersectTestRect(rightOfRect, 130), {x:right, y:110}, "point below middle");
assert.deepEqual(intersectTestRect(closerRightOfRect, bottom), {x:right, y:125}, "point in line with bottom");
assert.deepEqual(intersectTestRect(rightOfRect, 175), {x:right, y:125}, "point below bottom");
});
QUnit.test("intersects top side", function(assert) {
var aboveRect = 0;
assert.deepEqual(intersectTestRect(80, aboveRect), {x:115, y:top}, "point left of left");
assert.deepEqual(intersectTestRect(left, aboveRect), {x:125, y:top}, "point in line with left");
assert.deepEqual(intersectTestRect(120, aboveRect), {x:135, y:top}, "point left of middle");
assert.deepEqual(intersectTestRect(hMiddle, aboveRect), {x:150, y:top}, "point exact middle");
assert.deepEqual(intersectTestRect(180, aboveRect), {x:165, y:top}, "point right of middle");
assert.deepEqual(intersectTestRect(right, aboveRect), {x:175, y:top}, "point in line with right");
assert.deepEqual(intersectTestRect(220, aboveRect), {x:185, y:top}, "point right of right");
});
QUnit.test("intersects bottom side", function(assert) {
var belowRect = 200;
assert.deepEqual(intersectTestRect(80, belowRect), {x:115, y:bottom}, "point left of left");
assert.deepEqual(intersectTestRect(left, belowRect), {x:125, y:bottom}, "point in line with left");
assert.deepEqual(intersectTestRect(120, belowRect), {x:135, y:bottom}, "point left of middle");
assert.deepEqual(intersectTestRect(hMiddle, belowRect), {x:150, y:bottom}, "point exact middle");
assert.deepEqual(intersectTestRect(180, belowRect), {x:165, y:bottom}, "point right of middle");
assert.deepEqual(intersectTestRect(right, belowRect), {x:175, y:bottom}, "point in line with right");
assert.deepEqual(intersectTestRect(220, belowRect), {x:185, y:bottom}, "point right of right");
});
QUnit.test("intersects a corner", function(assert) {
assert.deepEqual(intersectTestRect(left-50, top-50), {x:left, y:top}, "intersection line aligned with top-left corner");
assert.deepEqual(intersectTestRect(right+50, top-50), {x:right, y:top}, "intersection line aligned with top-right corner");
assert.deepEqual(intersectTestRect(left-50, bottom+50), {x:left, y:bottom}, "intersection line aligned with bottom-left corner");
assert.deepEqual(intersectTestRect(right+50, bottom+50), {x:right, y:bottom}, "intersection line aligned with bottom-right corner");
});
QUnit.test("on the corners", function(assert) {
assert.deepEqual(intersectTestRect(left, top), {x:left, y:top}, "top-left corner");
assert.deepEqual(intersectTestRect(right, top), {x:right, y:top}, "top-right corner");
assert.deepEqual(intersectTestRect(right, bottom), {x:right, y:bottom}, "bottom-right corner");
assert.deepEqual(intersectTestRect(left, bottom), {x:left, y:bottom}, "bottom-left corner");
});
QUnit.test("on the edges", function(assert) {
assert.deepEqual(intersectTestRect(hMiddle, top), {x:hMiddle, y:top}, "top Edge");
assert.deepEqual(intersectTestRect(right, vMiddle), {x:right, y:vMiddle}, "right Edge");
assert.deepEqual(intersectTestRect(hMiddle, bottom), {x:hMiddle, y:bottom}, "bottom Edge");
assert.deepEqual(intersectTestRect(left, vMiddle), {x:left, y:vMiddle}, "left Edge");
});
QUnit.test("validates inputs", function(assert) {
assert.throws(checkTestRect(hMiddle, vMiddle), /cannot be inside/, "center");
assert.throws(checkTestRect(hMiddle-10, vMiddle-10), /cannot be inside/, "top left of center");
assert.throws(checkTestRect(hMiddle-10, vMiddle), /cannot be inside/, "left of center");
assert.throws(checkTestRect(hMiddle-10, vMiddle+10), /cannot be inside/, "bottom left of center");
assert.throws(checkTestRect(hMiddle, vMiddle-10), /cannot be inside/, "above center");
assert.throws(checkTestRect(hMiddle, vMiddle), /cannot be inside/, "center");
assert.throws(checkTestRect(hMiddle, vMiddle+10), /cannot be inside/, "below center");
assert.throws(checkTestRect(hMiddle+10, vMiddle-10), /cannot be inside/, "top right of center");
assert.throws(checkTestRect(hMiddle+10, vMiddle), /cannot be inside/, "right of center");
assert.throws(checkTestRect(hMiddle+10, vMiddle+10), /cannot be inside/, "bottom right of center");
assert.throws(checkTestRect(left+10, vMiddle-10), /cannot be inside/, "right of left Edge");
assert.throws(checkTestRect(left+10, vMiddle), /cannot be inside/, "right of left Edge");
assert.throws(checkTestRect(left+10, vMiddle+10), /cannot be inside/, "right of left Edge");
assert.throws(checkTestRect(right-10, vMiddle-10), /cannot be inside/, "left of right Edge");
assert.throws(checkTestRect(right-10, vMiddle), /cannot be inside/, "left of right Edge");
assert.throws(checkTestRect(right-10, vMiddle+10), /cannot be inside/, "left of right Edge");
assert.throws(checkTestRect(hMiddle-10, top+10), /cannot be inside/, "below top Edge");
assert.throws(checkTestRect(hMiddle, top+10), /cannot be inside/, "below top Edge");
assert.throws(checkTestRect(hMiddle+10, top+10), /cannot be inside/, "below top Edge");
assert.throws(checkTestRect(hMiddle-10, bottom-10), /cannot be inside/, "above bottom Edge");
assert.throws(checkTestRect(hMiddle, bottom-10), /cannot be inside/, "above bottom Edge");
assert.throws(checkTestRect(hMiddle+10, bottom-10), /cannot be inside/, "above bottom Edge");
});
QUnit.test("doesn't validate inputs", function(assert) {
assert.deepEqual(intersectTestRectNoValidation(hMiddle-10, vMiddle-10), {x:left, y:top}, "top left of center");
assert.deepEqual(intersectTestRectNoValidation(hMiddle-10, vMiddle), {x:left, y:vMiddle}, "left of center");
assert.deepEqual(intersectTestRectNoValidation(hMiddle-10, vMiddle+10), {x:left, y:bottom}, "bottom left of center");
assert.deepEqual(intersectTestRectNoValidation(hMiddle, vMiddle-10), {x:hMiddle, y:top}, "above center");
assert.deepEqual(intersectTestRectNoValidation(hMiddle, vMiddle), {x:hMiddle, y:vMiddle}, "center");
assert.deepEqual(intersectTestRectNoValidation(hMiddle, vMiddle+10), {x:hMiddle, y:bottom}, "below center");
assert.deepEqual(intersectTestRectNoValidation(hMiddle+10, vMiddle-10), {x:right, y:top}, "top right of center");
assert.deepEqual(intersectTestRectNoValidation(hMiddle+10, vMiddle), {x:right, y:vMiddle}, "right of center");
assert.deepEqual(intersectTestRectNoValidation(hMiddle+10, vMiddle+10), {x:right, y:bottom}, "bottom right of center");
});
})();
<link href="https://code.jquery.com/qunit/qunit-2.3.2.css" rel="stylesheet"/>
<script src="https://code.jquery.com/qunit/qunit-2.3.2.js"></script>
<div id="qunit"></div>
Javaの解決策は、線分(最初の4つのパラメーター)が軸に沿った長方形(最後の4つのパラメーター)と交差する場合にtrueを返します。代わりに交差点を返すのは簡単です)最初に完全に外側にあるかどうかをチェックし、そうでなければ線方程式y=m*x+b
。長方形を構成する線は軸に沿っているため、チェックは簡単です。
public boolean aabbContainsSegment (float x1, float y1, float x2, float y2, float minX, float minY, float maxX, float maxY) {
// Completely outside.
if ((x1 <= minX && x2 <= minX) || (y1 <= minY && y2 <= minY) || (x1 >= maxX && x2 >= maxX) || (y1 >= maxY && y2 >= maxY))
return false;
float m = (y2 - y1) / (x2 - x1);
float y = m * (minX - x1) + y1;
if (y > minY && y < maxY) return true;
y = m * (maxX - x1) + y1;
if (y > minY && y < maxY) return true;
float x = (minY - y1) / m + x1;
if (x > minX && x < maxX) return true;
x = (maxY - y1) / m + x1;
if (x > minX && x < maxX) return true;
return false;
}
セグメントの開始または終了が長方形の内側にある場合はショートカットすることは可能ですが、おそらく、セグメントの片方または両方の端が内側にある場合は常にtrueを返す数学を実行する方がよいでしょう。とにかくショートカットが必要な場合は、「完全に外部」チェックの後に以下のコードを挿入します。
// Start or end inside.
if ((x1 > minX && x1 < maxX && y1 > minY && y1 < maxY) || (x2 > minX && x2 < maxX && y2 > minY && y2 < maxY)) return true;
そのためのプログラムは提供しませんが、次の方法で実行できます。
私は数学のファンではありませんし、他の言語の翻訳を既に楽しんでいるなら他の言語の翻訳を特に楽しんでいないので、退屈な翻訳タスクを完了するたびに、コードにつながった記事にそれを追加します。二重の仕事をしている人を防ぐため。
C#でこの交差コードを使用する場合は、こちらをご覧ください http://dotnetbyexample.blogspot.nl/2013/09/utility-classes-to-check-if-lines-andor.html
ここに私のために働く解決策があります。私は長方形が軸に整列していると仮定します。
データ:
// Center of the Rectangle
let Cx: number
let Cy: number
// Width
let w: number
// Height
let h: number
// Other Point
let Ax: number
let Ay: number
ここで、長方形の中心で点Aを変換して、長方形の中心がO(0,0)になるようにし、最初の四半期の問題を検討します(つまり、x> 0およびy> 0)。
// Coordinates Translated
let Px = Math.abs(Ax - Cx)
let Py = Math.abs(Ay - Cy)
// Slope of line from Point P to Center
let Pm = Py / Px
// Slope of rectangle Diagonal
let Rm = h / w
// If the point is inside the rectangle, return the center
let res: [number, number] = [0, 0]
// Check if the point is inside and if so do not calculate
if (!(Px < w / 2 && Py < h / 2)) {
// Calculate point in first quarter: Px >= 0 && Py >= 0
if (Pm <= Rm) {
res[0] = w / 2
res[1] = (w * Pm) / 2
} else {
res[0] = h / (Pm * 2)
res[1] = h / 2
}
// Set original sign
if (Ax - Cx < 0) res[0] *= -1
if (Ay - Cy < 0) res[1] *= -1
}
// Translate back
return [res[0] + Cx, res[1] + Cy]
同じ長方形を使用して多くのラインをテストする場合に特に考慮できる別のオプションは、座標系を変換して、軸を長方形の対角線に揃えることです。次に、ラインまたはレイは長方形の中心から始まるので、角度を決定でき、角度で交差するセグメントを判断できます(つまり、<90deg seg 1、90deg <<180deg seg 2など)。それからもちろん元の座標系に変換する必要があります
これはより多くの作業のように見えますが、変換行列とその逆行列は一度計算してから再利用できます。これは、3Dなどの面との象限や交差を考慮する必要がある場合に、より簡単に高次元の長方形にも拡張されます。
これが最良の方法であるかどうかはわかりませんが、できることは、四角形の内側にある線の割合を把握することです。これは、長方形の幅と、AとBのx座標の差(または高さとy座標。幅と高さに基づいて、どのケースが当てはまるかを確認でき、他のケースは拡張子になります)長方形の辺の)。これができたら、BからAへのベクトルの比率を取得するだけで、交点の座標が得られます。
基本的な数学のみを使用して、(無限の)線と長方形の交差間隔を返す少し冗長なメソッドを次に示します。
// Line2 - 2D line with Origin (= offset from 0,0) and direction
// Rectangle2 - 2D rectangle by min and max points
// Contacts - Stores entry and exit times of a line through a convex shape
Contacts findContacts(const Line2 &line, const Rectangle2 &rect) {
Contacts contacts;
// If the line is not parallel to the Y axis, find out when it will cross
// the limits of the rectangle horizontally
if(line.Direction.X != 0.0f) {
float leftTouch = (rect.Min.X - line.Origin.X) / line.Direction.X;
float rightTouch = (rect.Max.X - line.Origin.X) / line.Direction.X;
contacts.Entry = std::fmin(leftTouch, rightTouch);
contacts.Exit = std::fmax(leftTouch, rightTouch);
} else if((line.Offset.X < rect.Min.X) || (line.Offset.X >= rect.Max.X)) {
return Contacts::None; // Rectangle missed by vertical line
}
// If the line is not parallel to the X axis, find out when it will cross
// the limits of the rectangle vertically
if(line.Direction.Y != 0.0f) {
float topTouch = (rectangle.Min.Y - line.Offset.Y) / line.Direction.Y;
float bottomTouch = (rectangle.Max.Y - line.Offset.Y) / line.Direction.Y;
// If the line is parallel to the Y axis (and it goes through
// the rectangle), only the Y axis needs to be taken into account.
if(line.Direction.X == 0.0f) {
contacts.Entry = std::fmin(topTouch, bottomTouch);
contacts.Exit = std::fmax(topTouch, bottomTouch);
} else {
float verticalEntry = std::fmin(topTouch, bottomTouch);
float verticalExit = std::fmax(topTouch, bottomTouch);
// If the line already left the rectangle on one axis before entering it
// on the other, it has missed the rectangle.
if((verticalExit < contacts.Entry) || (contacts.Exit < verticalEntry)) {
return Contacts::None;
}
// Restrict the intervals from the X axis of the rectangle to where
// the line is also within the limits of the rectangle on the Y axis
contacts.Entry = std::fmax(verticalEntry, contacts.Entry);
contacts.Exit = std::fmin(verticalExit, contacts.Exit);
}
} else if((line.Offset.Y < rect.Min.Y) || (line.Offset.Y > rect.Max.Y)) {
return Contacts::None; // Rectangle missed by horizontal line
}
return contacts;
}
このアプローチは、高度な数値安定性を提供します(間隔は、すべての場合において、単一の減算と除算の結果です)が、いくつかの分岐を伴います。
線分セグメント(開始点と終了点がある)の場合、セグメントの開始点を原点として、方向として、end - start
。 2つの交差点の座標の計算は、entryPoint = Origin + direction * contacts.Entry
およびexitPoint = Origin + direction * contacts.Exit
。