複数の数値の最小公倍数をどのように計算しますか?
これまでのところ、2つの数値間でしか計算できませんでした。しかし、それを拡張して3つ以上の数を計算する方法がわかりません。
これまでのところ、これは私がやった方法です
LCM = num1 * num2 / gcd ( num1 , num2 )
Gcdでは、数値の最大公約数を計算する関数です。ユークリッドアルゴリズムの使用
しかし、3つ以上の数字を計算する方法がわかりません。
2つの数値のLCMを繰り返し計算することにより、3つ以上の数値のLCMを計算できます。
lcm(a,b,c) = lcm(a,lcm(b,c))
Python(変更済み primes.py ):
def gcd(a, b):
"""Return greatest common divisor using Euclid's Algorithm."""
while b:
a, b = b, a % b
return a
def lcm(a, b):
"""Return lowest common multiple."""
return a * b // gcd(a, b)
def lcmm(*args):
"""Return lcm of args."""
return reduce(lcm, args)
使用法:
>>> lcmm(100, 23, 98)
112700
>>> lcmm(*range(1, 20))
232792560
reduce()
は that のような働きをします:
>>> f = lambda a,b: "f(%s,%s)" % (a,b)
>>> print reduce(f, "abcd")
f(f(f(a,b),c),d)
ECMAスタイルの実装を次に示します。
function gcd(a, b){
// Euclidean algorithm
var t;
while (b != 0){
t = b;
b = a % b;
a = t;
}
return a;
}
function lcm(a, b){
return (a * b / gcd(a, b));
}
function lcmm(args){
// Recursively iterate through pairs of arguments
// i.e. lcm(args[0], lcm(args[1], lcm(args[2], args[3])))
if(args.length == 2){
return lcm(args[0], args[1]);
} else {
var arg0 = args[0];
args.shift();
return lcm(arg0, lcmm(args));
}
}
私はこれで行きます(C#):
static long LCM(long[] numbers)
{
return numbers.Aggregate(lcm);
}
static long lcm(long a, long b)
{
return Math.Abs(a * b) / GCD(a, b);
}
static long GCD(long a, long b)
{
return b == 0 ? a : GCD(b, a % b);
}
一見すると、このコードが何をしているのかあまり明確ではないので、いくつかの明確化:
AggregateはLinq拡張メソッドであるため、System.Linqを使用して参照に追加することを忘れないでください。
Aggregateは累積関数を取得するため、IEnumerableでプロパティlcm(a、b、c)= lcm(a、lcm(b、c))を使用できます。 集計の詳細
GCD計算では、 ユークリッドアルゴリズム を使用します。
lcmの計算ではAbs(a * b)/ gcd(a、b)を使用します。 最大公約数による減少 を参照してください。
お役に立てれば、
Gcdの関数を必要としないPythonコード:
from sys import argv
def lcm(x,y):
tmp=x
while (tmp%y)!=0:
tmp+=x
return tmp
def lcmm(*args):
return reduce(lcm,args)
args=map(int,argv[1:])
print lcmm(*args)
ターミナルでは次のように表示されます。
$ python lcm.py 10 15 17
510
私はHaskellでこれを理解しました:
lcm' :: Integral a => a -> a -> a
lcm' a b = a`div`(gcd a b) * b
lcm :: Integral a => [a] -> a
lcm (n:ns) = foldr lcm' n ns
独自のgcd
関数を作成するのに時間をかけましたが、それはPreludeでしか見つかりませんでした!今日私のための多くの学習:D
1〜20の整数のLCMを返すPythonワンライナー(インポートをカウントしない)は次のとおりです。
Python 3.5以降のインポート:
from functools import reduce
from math import gcd
Python 2.7のインポート:
from fractions import gcd
一般的なロジック:
lcm = reduce(lambda x,y: x*y//gcd(x, y), range(1, 21))
Python 2 と Python の両方で、演算子の優先順位ルールにより、*
演算子と//
演算子の優先順位が同じであるため、左から右へ。そのため、x*y//z
はx*(y//z)
ではなく(x*y)//z
を意味します。通常、この2つの結果は異なります。これは、フロート除算ではそれほど重要ではありませんでしたが、 フロア除算 では重要です。
Virgil Disgr4ceの実装のC#ポートを次に示します。
public class MathUtils
{
/// <summary>
/// Calculates the least common multiple of 2+ numbers.
/// </summary>
/// <remarks>
/// Uses recursion based on lcm(a,b,c) = lcm(a,lcm(b,c)).
/// Ported from http://stackoverflow.com/a/2641293/420175.
/// </remarks>
public static Int64 LCM(IList<Int64> numbers)
{
if (numbers.Count < 2)
throw new ArgumentException("you must pass two or more numbers");
return LCM(numbers, 0);
}
public static Int64 LCM(params Int64[] numbers)
{
return LCM((IList<Int64>)numbers);
}
private static Int64 LCM(IList<Int64> numbers, int i)
{
// Recursively iterate through pairs of arguments
// i.e. lcm(args[0], lcm(args[1], lcm(args[2], args[3])))
if (i + 2 == numbers.Count)
{
return LCM(numbers[i], numbers[i+1]);
}
else
{
return LCM(numbers[i], LCM(numbers, i+1));
}
}
public static Int64 LCM(Int64 a, Int64 b)
{
return (a * b / GCD(a, b));
}
/// <summary>
/// Finds the greatest common denominator for 2 numbers.
/// </summary>
/// <remarks>
/// Also from http://stackoverflow.com/a/2641293/420175.
/// </remarks>
public static Int64 GCD(Int64 a, Int64 b)
{
// Euclidean algorithm
Int64 t;
while (b != 0)
{
t = b;
b = a % b;
a = t;
}
return a;
}
}'
数字のリストのlcmを見つける関数:
def function(l):
s = 1
for i in l:
s = lcm(i, s)
return s
LINQを使用すると、次のように記述できます。
static int LCM(int[] numbers)
{
return numbers.Aggregate(LCM);
}
static int LCM(int a, int b)
{
return a * b / GCD(a, b);
}
using System.Linq;
を追加し、例外の処理を忘れないでください...
ここではSwiftにあります。
// Euclid's algorithm for finding the greatest common divisor
func gcd(_ a: Int, _ b: Int) -> Int {
let r = a % b
if r != 0 {
return gcd(b, r)
} else {
return b
}
}
// Returns the least common multiple of two numbers.
func lcm(_ m: Int, _ n: Int) -> Int {
return m / gcd(m, n) * n
}
// Returns the least common multiple of multiple numbers.
func lcmm(_ numbers: [Int]) -> Int {
return numbers.reduce(1) { lcm($0, $1) }
}
Rでは、パッケージから関数mGCD(x)およびmLCM(x)を使用できますnumbers、整数ベクトルxのすべての数値の最大公約数と最小公倍数を一緒に計算するには:
library(numbers)
mGCD(c(4, 8, 12, 16, 20))
[1] 4
mLCM(c(8,9,21))
[1] 504
# Sequences
mLCM(1:20)
[1] 232792560
Scalaバージョン:
def gcd(a: Int, b: Int): Int = if (b == 0) a else gcd(b, a % b)
def gcd(nums: Iterable[Int]): Int = nums.reduce(gcd)
def lcm(a: Int, b: Int): Int = if (a == 0 || b == 0) 0 else a * b / gcd(a, b)
def lcm(nums: Iterable[Int]): Int = nums.reduce(lcm)
ES6スタイル
function gcd(...numbers) {
return numbers.reduce((a, b) => b === 0 ? a : gcd(b, a % b));
}
function lcm(...numbers) {
return numbers.reduce((a, b) => Math.abs(a * b) / gcd(a, b));
}
楽しみのために、シェル(ほぼすべてのシェル)実装:
#!/bin/sh
gcd() { # Calculate $1 % $2 until $2 becomes zero.
until [ "$2" -eq 0 ]; do set -- "$2" "$(($1%$2))"; done
echo "$1"
}
lcm() { echo "$(( $1 / $(gcd "$1" "$2") * $2 ))"; }
while [ $# -gt 1 ]; do
t="$(lcm "$1" "$2")"
shift 2
set -- "$t" "$@"
done
echo "$1"
で試してください:
$ ./script 2 3 4 5 6
取得するため
60
最大の入力と結果は(2^63)-1
未満である必要があります。そうでない場合、Shell mathはラップします。
あなたはそれを別の方法で行うことができます-n個の番号があります。連続した番号のペアを取り、そのlcmを別の配列に保存します。最初の反復プログラムでこれを行うと、n/2回の反復が行われ、次に(0,1)、(2,3)などのように0から始まるペアが選択されます。LCMを計算し、別の配列に格納します。これは、1つのアレイが残るまで行います。 (nが奇数の場合、lcmを見つけることはできません)
以下はPHPの実装です。
// https://stackoverflow.com/q/12412782/1066234
function math_gcd($a,$b)
{
$a = abs($a);
$b = abs($b);
if($a < $b)
{
list($b,$a) = array($a,$b);
}
if($b == 0)
{
return $a;
}
$r = $a % $b;
while($r > 0)
{
$a = $b;
$b = $r;
$r = $a % $b;
}
return $b;
}
function math_lcm($a, $b)
{
return ($a * $b / math_gcd($a, $b));
}
// https://stackoverflow.com/a/2641293/1066234
function math_lcmm($args)
{
// Recursively iterate through pairs of arguments
// i.e. lcm(args[0], lcm(args[1], lcm(args[2], args[3])))
if(count($args) == 2)
{
return math_lcm($args[0], $args[1]);
}
else
{
$arg0 = $args[0];
array_shift($args);
return math_lcm($arg0, math_lcmm($args));
}
}
// fraction bonus
function math_fraction_simplify($num, $den)
{
$g = math_gcd($num, $den);
return array($num/$g, $den/$g);
}
var_dump( math_lcmm( array(4, 7) ) ); // 28
var_dump( math_lcmm( array(5, 25) ) ); // 25
var_dump( math_lcmm( array(3, 4, 12, 36) ) ); // 36
var_dump( math_lcmm( array(3, 4, 7, 12, 36) ) ); // 252
クレジットは、 上記の回答(ECMAスタイルのコード) で@ T3db0tに送られます。
私はgcdとlcmの配列要素を探していましたが、次のリンクで良い解決策を見つけました。
https://www.hackerrank.com/challenges/between-two-sets/forum
次のコードが含まれます。 gcdのアルゴリズムは、以下のリンクで説明されているユークリッドアルゴリズムを使用しています。
private static int gcd(int a, int b) {
while (b > 0) {
int temp = b;
b = a % b; // % is remainder
a = temp;
}
return a;
}
private static int gcd(int[] input) {
int result = input[0];
for (int i = 1; i < input.length; i++) {
result = gcd(result, input[i]);
}
return result;
}
private static int lcm(int a, int b) {
return a * (b / gcd(a, b));
}
private static int lcm(int[] input) {
int result = input[0];
for (int i = 1; i < input.length; i++) {
result = lcm(result, input[i]);
}
return result;
}
int gcd(int a, int b) { if (b == 0) return a; return gcd(b, a%b); } int lcm(int[] a, int n) { int res = 1, i; for (i = 0; i < n; i++) { res = res*a[i]/gcd(res, a[i]); } return res; }
clc;
data = [1 2 3 4 5]
LCM=1;
for i=1:1:length(data)
LCM = lcm(LCM,data(i))
end
すばやく動作するコードを探している人は、これを試してください:
関数lcm_n(args, num)
を作成しました。これは、配列args
内のすべての数値のlcmを計算して返します。 2番目のparameternum
は、配列内の数値のカウントです。
これらの数値をすべて配列args
に入れてから、lcm_n(args,num);
のような関数を呼び出します
この関数returnsこれらすべての数値のlcm。
関数lcm_n(args, num)
の実装は次のとおりです
int lcm_n(int args[], int num) //lcm of more than 2 numbers
{
int i, temp[num-1];
if(num==2)
{
return lcm(args[0], args[1]);
}
else
{
for(i=0;i<num-1;i++)
{
temp[i] = args[i];
}
temp[num-2] = lcm(args[num-2], args[num-1]);
return lcm_n(temp,num-1);
}
}
この関数が機能するには、以下の2つの関数が必要です。したがって、それらを追加するだけです。
int lcm(int a, int b) //lcm of 2 numbers
{
return (a*b)/gcd(a,b);
}
int gcd(int a, int b) //gcd of 2 numbers
{
int numerator, denominator, remainder;
//Euclid's algorithm for computing GCD of two numbers
if(a > b)
{
numerator = a;
denominator = b;
}
else
{
numerator = b;
denominator = a;
}
remainder = numerator % denominator;
while(remainder != 0)
{
numerator = denominator;
denominator = remainder;
remainder = numerator % denominator;
}
return denominator;
}
これはどう?
from operator import mul as MULTIPLY
def factors(n):
f = {} # a dict is necessary to create 'factor : exponent' pairs
divisor = 2
while n > 1:
while (divisor <= n):
if n % divisor == 0:
n /= divisor
f[divisor] = f.get(divisor, 0) + 1
else:
divisor += 1
return f
def mcm(numbers):
#numbers is a list of numbers so not restricted to two items
high_factors = {}
for n in numbers:
fn = factors(n)
for (key, value) in fn.iteritems():
if high_factors.get(key, 0) < value: # if fact not in dict or < val
high_factors[key] = value
return reduce (MULTIPLY, ((k ** v) for k, v in high_factors.items()))
メソッドcompLCMはベクトルを取り、LCMを返します。すべての数値は、ベクトルin_numbers内にあります。
int mathOps::compLCM(std::vector<int> &in_numbers)
{
int tmpNumbers = in_numbers.size();
int tmpMax = *max_element(in_numbers.begin(), in_numbers.end());
bool tmpNotDividable = false;
while (true)
{
for (int i = 0; i < tmpNumbers && tmpNotDividable == false; i++)
{
if (tmpMax % in_numbers[i] != 0 )
tmpNotDividable = true;
}
if (tmpNotDividable == false)
return tmpMax;
else
tmpMax++;
}
}
実行中の実装があります Calcullaの最小公倍数 これは、ステップを表示する任意の数の入力に対して機能します。
私たちがしていることは:
0: Assume we got inputs[] array, filled with integers. So, for example:
inputsArray = [6, 15, 25, ...]
lcm = 1
1: Find minimal prime factor for each input.
Minimal means for 6 it's 2, for 25 it's 5, for 34 it's 17
minFactorsArray = []
2: Find lowest from minFactors:
minFactor = MIN(minFactorsArray)
3: lcm *= minFactor
4: Iterate minFactorsArray and if the factor for given input equals minFactor, then divide the input by it:
for (inIdx in minFactorsArray)
if minFactorsArray[inIdx] == minFactor
inputsArray[inIdx] \= minFactor
5: repeat steps 1-4 until there is nothing to factorize anymore.
So, until inputsArray contains only 1-s.
それだけです-lcmを手に入れました。
これは私が使用したものです-
def greater(n):
a=num[0]
for i in range(0,len(n),1):
if(a<n[i]):
a=n[i]
return a
r=input('enter limit')
num=[]
for x in range (0,r,1):
a=input('enter number ')
num.append(a)
a= greater(num)
i=0
while True:
while (a%num[i]==0):
i=i+1
if(i==len(num)):
break
if i==len(num):
print 'L.C.M = ',a
break
else:
a=a+1
i=0
LCMは、結合的かつ可換的です。
LCM(a、b、c)= LCM(LCM(a、b)、c)= LCM(a、LCM(b、c))
cのサンプルコードを次に示します。
int main()
{
int a[20],i,n,result=1; // assumption: count can't exceed 20
printf("Enter number of numbers to calculate LCM(less than 20):");
scanf("%d",&n);
printf("Enter %d numbers to calculate their LCM :",n);
for(i=0;i<n;i++)
scanf("%d",&a[i]);
for(i=0;i<n;i++)
result=lcm(result,a[i]);
printf("LCM of given numbers = %d\n",result);
return 0;
}
int lcm(int a,int b)
{
int gcd=gcd_two_numbers(a,b);
return (a*b)/gcd;
}
int gcd_two_numbers(int a,int b)
{
int temp;
if(a>b)
{
temp=a;
a=b;
b=temp;
}
if(b%a==0)
return a;
else
return gcd_two_numbers(b%a,a);
}
Pythonの場合:
def lcm(*args):
"""Calculates lcm of args"""
biggest = max(args) #find the largest of numbers
rest = [n for n in args if n != biggest] #the list of the numbers without the largest
factor = 1 #to multiply with the biggest as long as the result is not divisble by all of the numbers in the rest
while True:
#check if biggest is divisble by all in the rest:
ans = False in [(biggest * factor) % n == 0 for n in rest]
#if so the clm is found break the loop and return it, otherwise increment factor by 1 and try again
if not ans:
break
factor += 1
biggest *= factor
return "lcm of {0} is {1}".format(args, biggest)
>>> lcm(100,23,98)
'lcm of (100, 23, 98) is 112700'
>>> lcm(*range(1, 20))
'lcm of (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19) is 232792560'
python 3の場合:
from functools import reduce
gcd = lambda a,b: a if b==0 else gcd(b, a%b)
def lcm(lst):
return reduce(lambda x,y: x*y//gcd(x, y), lst)
GCDでは、負の数について少し修正する必要があります。
def gcd(x,y):
while y:
if y<0:
x,y=-x,-y
x,y=y,x % y
return x
def gcdl(*list):
return reduce(gcd, *list)
def lcm(x,y):
return x*y / gcd(x,y)
def lcml(*list):
return reduce(lcm, *list)