3Dモートン数を計算するための高速な方法を探しています。 このサイト は2Dモートン番号に対してそれを行うためのマジックナンバーベースのトリックを持っていますが、それを3Dに拡張する方法は明らかではないようです。
つまり、基本的に、最小限の操作で1つの30ビット数にインターリーブしたい3つの10ビット数があります。
同じ手法を使用できます。変数には、上位22ビットが0
に設定された32ビット整数が含まれていると想定しています(これは必要以上に制限されています)。 3つの10ビット整数の1つを含む変数x
ごとに、次のようにします。
x = (x | (x << 16)) & 0x030000FF;
x = (x | (x << 8)) & 0x0300F00F;
x = (x | (x << 4)) & 0x030C30C3;
x = (x | (x << 2)) & 0x09249249;
次に、x
、y
およびz
を使用して、操作された3つの10ビット整数を使用して次の結果を取得します。
x | (y << 1) | (z << 2)
この手法の仕組みは次のとおりです。上記のx = ...
行のそれぞれは、ビットのグループを半分に「分割」して、他の整数のビットのために十分なスペースが間にあるようにします。たとえば、3つの4ビット整数を検討する場合、ビット1234の1つを000012000034に分割します。ここで、ゼロは他の整数用に予約されています。次のステップでは、同じ方法で12と34を分割して001002003004を取得します。10ビットでは2つのグループに繰り返し除算することはできませんが、最終的に最も高いものを失う16ビットと見なすことができます。 。
最初の行からわかるように、実際には、入力整数x
ごとに、x & 0x03000000 == 0
を保持するだけで済みます。
これがpython script:
私は彼のコメントからヒントを得ました: Fabian“ ryg” Giesen
以下の長いコメントを読んでください!どのビットがどこまで進む必要があるかを追跡する必要があります!
次に、各ステップでこれらのビットを選択して移動し、ビットマスク(コメントの最後の行を参照)を適用してマスクします。
Bit Distances: [0, 2, 4, 6, 8, 10, 12, 14, 16, 18]
Bit Distances (binary): ['0', '10', '100', '110', '1000', '1010', '1100', '1110', '10000', '10010']
Shifting bits by 1 for bits idx: []
Shifting bits by 2 for bits idx: [1, 3, 5, 7, 9]
Shifting bits by 4 for bits idx: [2, 3, 6, 7]
Shifting bits by 8 for bits idx: [4, 5, 6, 7]
Shifting bits by 16 for bits idx: [8, 9]
BitPositions: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
Shifted bef.: 0000 0000 0000 0000 0000 0011 0000 0000 hex: 0x300
Shifted: 0000 0011 0000 0000 0000 0000 0000 0000 hex: 0x3000000
NonShifted: 0000 0000 0000 0000 0000 0000 1111 1111 hex: 0xff
Bitmask is now: 0000 0011 0000 0000 0000 0000 1111 1111 hex: 0x30000ff
Shifted bef.: 0000 0000 0000 0000 0000 0000 1111 0000 hex: 0xf0
Shifted: 0000 0000 0000 0000 1111 0000 0000 0000 hex: 0xf000
NonShifted: 0000 0011 0000 0000 0000 0000 0000 1111 hex: 0x300000f
Bitmask is now: 0000 0011 0000 0000 1111 0000 0000 1111 hex: 0x300f00f
Shifted bef.: 0000 0000 0000 0000 1100 0000 0000 1100 hex: 0xc00c
Shifted: 0000 0000 0000 1100 0000 0000 1100 0000 hex: 0xc00c0
NonShifted: 0000 0011 0000 0000 0011 0000 0000 0011 hex: 0x3003003
Bitmask is now: 0000 0011 0000 1100 0011 0000 1100 0011 hex: 0x30c30c3
Shifted bef.: 0000 0010 0000 1000 0010 0000 1000 0010 hex: 0x2082082
Shifted: 0000 1000 0010 0000 1000 0010 0000 1000 hex: 0x8208208
NonShifted: 0000 0001 0000 0100 0001 0000 0100 0001 hex: 0x1041041
Bitmask is now: 0000 1001 0010 0100 1001 0010 0100 1001 hex: 0x9249249
x &= 0x3ff
x = (x | x << 16) & 0x30000ff <<< THIS IS THE MASK for shifting 16 (for bit 8 and 9)
x = (x | x << 8) & 0x300f00f
x = (x | x << 4) & 0x30c30c3
x = (x | x << 2) & 0x9249249
したがって、10ビットの数値と2つのインターリーブビット(32ビットの場合)の場合、次のことを行う必要があります!:
x &= 0x3ff
x = (x | x << 16) & 0x30000ff #<<< THIS IS THE MASK for shifting 16 (for bit 8 and 9)
x = (x | x << 8) & 0x300f00f
x = (x | x << 4) & 0x30c30c3
x = (x | x << 2) & 0x9249249
そして、21ビットの数値と2つのインターリーブビット(64ビットの場合)の場合、次のことを行う必要があります!:
x &= 0x1fffff
x = (x | x << 32) & 0x1f00000000ffff
x = (x | x << 16) & 0x1f0000ff0000ff
x = (x | x << 8) & 0x100f00f00f00f00f
x = (x | x << 4) & 0x10c30c30c30c30c3
x = (x | x << 2) & 0x1249249249249249
そして、42ビットの数値と2つのインターリーブビット(128ビットの場合)の場合、次のことを行う必要があります(必要な場合;-)):
x &= 0x3ffffffffff
x = (x | x << 64) & 0x3ff0000000000000000ffffffffL
x = (x | x << 32) & 0x3ff00000000ffff00000000ffffL
x = (x | x << 16) & 0x30000ff0000ff0000ff0000ff0000ffL
x = (x | x << 8) & 0x300f00f00f00f00f00f00f00f00f00fL
x = (x | x << 4) & 0x30c30c30c30c30c30c30c30c30c30c3L
x = (x | x << 2) & 0x9249249249249249249249249249249L
インターリーブパターンを生成およびチェックするPythonスクリプト!!!
def prettyBinString(x,d=32,steps=4,sep=".",emptyChar="0"):
b = bin(x)[2:]
zeros = d - len(b)
if zeros <= 0:
zeros = 0
k = steps - (len(b) % steps)
else:
k = steps - (d % steps)
s = ""
#print("zeros" , zeros)
#print("k" , k)
for i in range(zeros):
#print("k:",k)
if(k%steps==0 and i!= 0):
s+=sep
s += emptyChar
k+=1
for i in range(len(b)):
if( (k%steps==0 and i!=0 and zeros == 0) or (k%steps==0 and zeros != 0) ):
s+=sep
s += b[i]
k+=1
return s
def binStr(x): return prettyBinString(x,32,4," ","0")
def computeBitMaskPatternAndCode(numberOfBits, numberOfEmptyBits):
bitDistances=[ i*numberOfEmptyBits for i in range(numberOfBits) ]
print("Bit Distances: " + str(bitDistances))
bitDistancesB = [bin(dist)[2:] for dist in bitDistances]
print("Bit Distances (binary): " + str(bitDistancesB))
moveBits=[] #Liste mit allen Bits welche aufsteigend um 2, 4,8,16,32,64,128 stellen geschoben werden müssen
maxLength = len(max(bitDistancesB, key=len))
abort = False
for i in range(maxLength):
moveBits.append([])
for idx,bits in enumerate(bitDistancesB):
if not len(bits) - 1 < i:
if(bits[len(bits)-i-1] == "1"):
moveBits[i].append(idx)
for i in range(len(moveBits)):
print("Shifting bits by " + str(2**i) + "\t for bits idx: " + str(moveBits[i]))
bitPositions = range(numberOfBits);
print("BitPositions: " + str(bitPositions))
maskOld = (1 << numberOfBits) -1
codeString = "x &= " + hex(maskOld) + "\n"
for idx in xrange(len(moveBits)-1, -1, -1):
if len(moveBits[idx]):
shifted = 0
for bitIdxToMove in moveBits[idx]:
shifted |= 1<<bitPositions[bitIdxToMove];
bitPositions[bitIdxToMove] += 2**idx; # keep track where the actual bit stands! might get moved several times
# Get the non shifted part!
nonshifted = ~shifted & maskOld
print("Shifted bef.:\t" + binStr(shifted) + " hex: " + hex(shifted))
shifted = shifted << 2**idx
print("Shifted:\t" + binStr(shifted)+ " hex: " + hex(shifted))
print("NonShifted:\t" + binStr(nonshifted) + " hex: " + hex(nonshifted))
maskNew = shifted | nonshifted
print("Bitmask is now:\t" + binStr(maskNew) + " hex: " + hex(maskNew) +"\n")
#print("Code: " + "x = x | x << " +str(2**idx)+ " & " +hex(maskNew))
codeString += "x = (x | x << " +str(2**idx)+ ") & " +hex(maskNew) + "\n"
maskOld = maskNew
return codeString
numberOfBits = 10;
numberOfEmptyBits = 2;
codeString = computeBitMaskPatternAndCode(numberOfBits,numberOfEmptyBits);
print(codeString)
def partitionBy2(x):
exec(codeString)
return x
def checkPartition(x):
print("Check partition for: \t" + binStr(x))
part = partitionBy2(x);
print("Partition is : \t\t" + binStr(part))
#make the pattern manualy
partC = long(0);
for bitIdx in range(numberOfBits):
partC = partC | (x & (1<<bitIdx)) << numberOfEmptyBits*bitIdx
print("Partition check is :\t" + binStr(partC))
if(partC == part):
return True
else:
return False
checkError = False
for i in range(20):
x = random.getrandbits(numberOfBits);
if(checkPartition(x) == False):
checkError = True
break
if not checkError:
print("CHECK PARTITION SUCCESSFUL!!!!!!!!!!!!!!!!...")
else:
print("checkPartition has ERROR!!!!")
デコードコードもしばらく追加します!
4Kの空き容量がある場合、最も単純なのはおそらくルックアップテーブルです。
static uint32_t t [ 1024 ] = { 0, 0x1, 0x8, ... };
uint32_t m ( int a, int b, int c )
{
return t[a] | ( t[b] << 1 ) | ( t[c] << 2 );
}
ビットハックはシフトとマスクを使用してビットを分散するため、値をシフトしてORするたびに、一部のビットを空のスペースにコピーし、組み合わせをマスクして元のビットのみが残るようにします。
例えば:
x = 0xabcd;
= 0000_0000_0000_0000_1010_1011_1100_1101
x = (x | (x << S[3])) & B[3];
= ( 0x00abcd00 | 0x0000abcd ) & 0xff00ff
= 0x00ab__cd & 0xff00ff
= 0x00ab00cd
= 0000_0000_1010_1011_0000_0000_1100_1101
x = (x | (x << S[2])) & B[2];
= ( 0x0ab00cd0 | 0x00ab00cd) & 0x0f0f0f0f
= 0x0a_b_c_d & 0x0f0f0f0f
= 0x0a0b0c0d
= 0000_1010_0000_1011_0000_1100_0000_1101
x = (x | (x << S[1])) & B[1];
= ( 0000_1010_0000_1011_0000_1100_0000_1101 |
0010_1000_0010_1100_0011_0000_0011_0100 ) &
0011_0011_0011_0011_0011_0011_0011_0011
= 0010_0010_0010_0011_0011_0000_0011_0001
x = (x | (x << S[0])) & B[0];
= ( 0010_0010_0010_0011_0011_0000_0011_0001 |
0100_0100_0100_0110_0110_0000_0110_0010 ) &
0101_0101_0101_0101_0101_0101_0101_0101
= 0100_0010_0100_0101_0101_0000_0101_0001
各反復で、各ブロックは2つに分割され、ブロックの左端の半分の右端のビットが最終位置に移動し、必要なビットだけが残るようにマスクが適用されます。
入力の間隔を空けたら、一方の値がもう一方の値のゼロになるように入力をシフトするのは簡単です。
最終結果の値の間の2ビットを超えるようにその手法を拡張するには、ビットが終了する場所の間のシフトを増やす必要があります。スターティングブロックのサイズは2の累乗ではないため、少し注意が必要です。中央で分割するか、2の累乗の境界で分割することができます。
したがって、このような進化はうまくいくかもしれません:
0000_0000_0000_0000_0000_0011_1111_1111
0000_0011_0000_0000_0000_0000_1111_1111
0000_0011_0000_0000_1111_0000_0000_1111
0000_0011_0000_1100_0011_0000_1100_0011
0000_1001_0010_0100_1001_0010_0100_1001
// 0000_0000_0000_0000_0000_0011_1111_1111
x = ( x | ( x << 16 ) ) & 0x030000ff;
// 0000_0011_0000_0000_0000_0000_1111_1111
x = ( x | ( x << 8 ) ) & 0x0300f00f;
// 0000_0011_0000_0000_1111_0000_0000_1111
x = ( x | ( x << 4 ) ) & 0x030c30c3;
// 0000_0011_0000_1100_0011_0000_1100_0011
x = ( x | ( x << 2 ) ) & 0x09249249;
// 0000_1001_0010_0100_1001_0010_0100_1001
入力に対して同じ変換を実行し、1つずつシフトするか、2つシフトするか、またはそれらを一緒にシフトすれば完了です。
良いタイミングです、先月やったばかりです!
重要なのは2つの機能を作ることでした。 1つはビットを3分の1ビットごとに広げます。次に、それらの3つを(最後の2つをシフトして)組み合わせて、最終的なモートンインターリーブ値を取得できます。
このコードは、HIGHビット(固定小数点値の場合はより論理的です)からインターリーブします。アプリケーションがコンポーネントあたり10ビットしかない場合は、各値を22だけ左にシフトして、上位ビットから開始します。
/* Takes a value and "spreads" the HIGH bits to lower slots to seperate them.
ie, bit 31 stays at bit 31, bit 30 goes to bit 28, bit 29 goes to bit 25, etc.
Anything below bit 21 just disappears. Useful for interleaving values
for Morton codes. */
inline unsigned long spread3(unsigned long x)
{
x=(0xF0000000&x) | ((0x0F000000&x)>>8) | (x>>16); // spread top 3 nibbles
x=(0xC00C00C0&x) | ((0x30030030&x)>>4);
x=(0x82082082&x) | ((0x41041041&x)>>2);
return x;
}
inline unsigned long morton(unsigned long x, unsigned long y, unsigned long z)
{
return spread3(x) | (spread3(y)>>1) | (spread3(z)>>2);
}
上記を使用して、3つの16ビット数を48(実際には64)ビット数に結合するように変更しました。おそらくそれは誰かがそこにたどり着くためのちょっとした考えを救うでしょう。
#include <inttypes.h>
#include <assert.h>
uint64_t zorder3d(uint64_t x, uint64_t y, uint64_t z){
static const uint64_t B[] = {0x00000000FF0000FF, 0x000000F00F00F00F,
0x00000C30C30C30C3, 0X0000249249249249};
static const int S[] = {16, 8, 4, 2};
static const uint64_t MAXINPUT = 65536;
assert( ( (x < MAXINPUT) ) &&
( (y < MAXINPUT) ) &&
( (z < MAXINPUT) )
);
x = (x | (x << S[0])) & B[0];
x = (x | (x << S[1])) & B[1];
x = (x | (x << S[2])) & B[2];
x = (x | (x << S[3])) & B[3];
y = (y | (y << S[0])) & B[0];
y = (y | (y << S[1])) & B[1];
y = (y | (y << S[2])) & B[2];
y = (y | (y << S[3])) & B[3];
z = (z | (z << S[0])) & B[0];
z = (z | (z << S[1])) & B[1];
z = (z | (z << S[2])) & B[2];
z = (z | (z << S[3])) & B[3];
return ( x | (y << 1) | (z << 2) );
}
次のコードは、3つの10ビット入力番号のモートン数を見つけます。リンクからのideeを使用し、ステップ5-5、3-2-3-2、2-1-1-1-2-1-1-1、および1-1-1-でビット拡散を実行します。 10は2の累乗ではないため、1-1-1-1-1-1-1。
......................9876543210
............98765..........43210
........987....56......432....10
......98..7..5..6....43..2..1..0
....9..8..7..5..6..4..3..2..1..0
上記では、最初のステップの前と4つのステップすべての後のすべてのビットの位置を確認できます。
public static Int32 GetMortonNumber(Int32 x, Int32 y, Int32 z)
{
return SpreadBits(x, 0) | SpreadBits(y, 1) | SpreadBits(z, 2);
}
public static Int32 SpreadBits(Int32 x, Int32 offset)
{
if ((x < 0) || (x > 1023))
{
throw new ArgumentOutOfRangeException();
}
if ((offset < 0) || (offset > 2))
{
throw new ArgumentOutOfRangeException();
}
x = (x | (x << 10)) & 0x000F801F;
x = (x | (x << 4)) & 0x00E181C3;
x = (x | (x << 2)) & 0x03248649;
x = (x | (x << 2)) & 0x09249249;
return x << offset;
}
以下は、3Dポイント用にサイズ64ビットのモートンキーを生成するためのコードスニペットです。
using namespace std;
unsigned long long spreadBits(unsigned long long x)
{
x=(x|(x<<20))&0x000001FFC00003FF;
x=(x|(x<<10))&0x0007E007C00F801F;
x=(x|(x<<4))&0x00786070C0E181C3;
x=(x|(x<<2))&0x0199219243248649;
x=(x|(x<<2))&0x0649249249249249;
x=(x|(x<<2))&0x1249249249249249;
return x;
}
int main()
{
unsigned long long x,y,z,con=1;
con=con<<63;
printf("%#llx\n",(spreadBits(x)|(spreadBits(y)<<1)|(spreadBits(z)<<2))|con);
}
今日も同様の問題がありましたが、3つの数字の代わりに、任意のビット長の任意の数の数字を組み合わせる必要があります。私は独自のビット拡散およびマスキングアルゴリズムを採用し、それをC#BigIntegersに適用しました。これが私が書いたコードです。コンパイルステップとして、指定された次元数とビット深度の魔法数とマスクを計算します。次に、オブジェクトを複数の変換に再利用できます。
/// <summary>
/// Convert an array of integers into a Morton code by interleaving the bits.
/// Create one Morton object for a given pair of Dimension and BitDepth and reuse if when encoding multiple
/// Morton numbers.
/// </summary>
public class Morton
{
/// <summary>
/// Number of bits to use to represent each number being interleaved.
/// </summary>
public int BitDepth { get; private set; }
/// <summary>
/// Count of separate numbers to interleave into a Morton number.
/// </summary>
public int Dimensions { get; private set; }
/// <summary>
/// The MagicNumbers spread the bits out to the right position.
/// Each must must be applied and masked, because the bits would overlap if we only used one magic number.
/// </summary>
public BigInteger LargeMagicNumber { get; private set; }
public BigInteger SmallMagicNumber { get; private set; }
/// <summary>
/// The mask removes extraneous bits that were spread into positions needed by the other dimensions.
/// </summary>
public BigInteger Mask { get; private set; }
public Morton(int dimensions, int bitDepth)
{
BitDepth = bitDepth;
Dimensions = dimensions;
BigInteger magicNumberUnit = new BigInteger(1UL << (int)(Dimensions - 1));
LargeMagicNumber = magicNumberUnit;
BigInteger maskUnit = new BigInteger(1UL << (int)(Dimensions - 1));
Mask = maskUnit;
for (var i = 0; i < bitDepth - 1; i++)
{
LargeMagicNumber = (LargeMagicNumber << (Dimensions - 1)) | (i % 2 == 1 ? magicNumberUnit : BigInteger.Zero);
Mask = (Mask << Dimensions) | maskUnit;
}
SmallMagicNumber = (LargeMagicNumber >> BitDepth) << 1; // Need to trim off pesky ones place bit.
}
/// <summary>
/// Interleave the bits from several integers into a single BigInteger.
/// The high-order bit from the first number becomes the high-order bit of the Morton number.
/// The high-order bit of the second number becomes the second highest-ordered bit in the Morton number.
///
/// How it works.
///
/// When you multupliy by the magic numbers you make multiple copies of the the number they are multplying,
/// each shifted by a different amount.
/// As it turns out, the high order bit of the highest order copy of a number is N bits to the left of the
/// second bit of the second copy, and so forth.
/// This is because each copy is shifted one bit less than N times the copy number.
/// After that, you apply the AND-mask to unset all bits that are not in position.
///
/// Two magic numbers are needed because since each copy is shifted one less than the bitDepth, consecutive
/// copies would overlap and ruin the algorithm. Thus one magic number (LargeMagicNumber) handles copies 1, 3, 5, etc, while the
/// second (SmallMagicNumber) handles copies 2, 4, 6, etc.
/// </summary>
/// <param name="vector">Integers to combine.</param>
/// <returns>A Morton number composed of Dimensions * BitDepth bits.</returns>
public BigInteger Interleave(int[] vector)
{
if (vector == null || vector.Length != Dimensions)
throw new ArgumentException("Interleave expects an array of length " + Dimensions, "vector");
var morton = BigInteger.Zero;
for (var i = 0; i < Dimensions; i++)
{
morton |= (((LargeMagicNumber * vector[i]) & Mask) | ((SmallMagicNumber * vector[i]) & Mask)) >> i;
}
return morton;
}
public override string ToString()
{
return "Morton(Dimension: " + Dimensions + ", BitDepth: " + BitDepth
+ ", MagicNumbers: " + Convert.ToString((long)LargeMagicNumber, 2) + ", " + Convert.ToString((long)SmallMagicNumber, 2)
+ ", Mask: " + Convert.ToString((long)Mask, 2) + ")";
}
}
これが私がRubyで作成した、任意の長さのエンコーディングメソッドを生成するためのジェネレータです。
def morton_code_for(bits)
method = ''
limit_mask = (1 << (bits * 3)) - 1
split = (2 ** ((Math.log(bits) / Math.log(2)).to_i + 1)).to_i
level = 1
puts "// Coding for 3 #{bits}-bit values"
loop do
shift = split
split /= 2
level *= 2
mask = ([ '1' * split ] * level).join('0' * split * 2).to_i(2) & limit_mask
expression = "v = (v | (v << %2d)) & 0x%016x;" % [ shift, mask ]
method << expression
puts "%s // 0b%064b" % [ expression, mask ]
break if (split <= 1)
end
puts
print "// Test of method results: "
v = (1 << bits) - 1
puts eval(method).to_s(2)
end
morton_code_for(21)
出力は適切に汎用的であり、必要に応じて調整できます。サンプル出力:
// Coding for 3 21-bit values
v = (v | (v << 32)) & 0x7fff00000000ffff; // 0b0111111111111111000000000000000000000000000000001111111111111111
v = (v | (v << 16)) & 0x00ff0000ff0000ff; // 0b0000000011111111000000000000000011111111000000000000000011111111
v = (v | (v << 8)) & 0x700f00f00f00f00f; // 0b0111000000001111000000001111000000001111000000001111000000001111
v = (v | (v << 4)) & 0x30c30c30c30c30c3; // 0b0011000011000011000011000011000011000011000011000011000011000011
v = (v | (v << 2)) & 0x1249249249249249; // 0b0001001001001001001001001001001001001001001001001001001001001001
// Test of method results: 1001001001001001001001001001001001001001001001001001001001001