MM-dd-yyyy
の形式の文字列列を持つ日付pysparkデータフレームがあり、これを日付列に変換しようとしています。
私は試した:
df.select(to_date(df.STRING_COLUMN).alias('new_date')).show()
nullの文字列を取得します。誰でも助けることができますか?
UDFなしでこれを行うことは可能です(望ましいですか?):
from pyspark.sql.functions import unix_timestamp, from_unixtime
df = spark.createDataFrame(
[("11/25/1991",), ("11/24/1991",), ("11/30/1991",)],
['date_str']
)
df2 = df.select(
'date_str',
from_unixtime(unix_timestamp('date_str', 'MM/dd/yyy')).alias('date')
)
print(df2)
#DataFrame[date_str: string, date: timestamp]
df2.show(truncate=False)
#+----------+-------------------+
#|date_str |date |
#+----------+-------------------+
#|11/25/1991|1991-11-25 00:00:00|
#|11/24/1991|1991-11-24 00:00:00|
#|11/30/1991|1991-11-30 00:00:00|
#+----------+-------------------+
更新(1/10/2018):
Spark 2.2+の場合、これを行う最良の方法は、おそらく to_date
または to_timestamp
関数を使用することです。これらは両方ともformat
引数をサポートします。ドキュメントから:
>>> df = spark.createDataFrame([('1997-02-28 10:30:00',)], ['t'])
>>> df.select(to_timestamp(df.t, 'yyyy-MM-dd HH:mm:ss').alias('dt')).collect()
[Row(dt=datetime.datetime(1997, 2, 28, 10, 30))]
from datetime import datetime
from pyspark.sql.functions import col, udf
from pyspark.sql.types import DateType
# Creation of a dummy dataframe:
df1 = sqlContext.createDataFrame([("11/25/1991","11/24/1991","11/30/1991"),
("11/25/1391","11/24/1992","11/30/1992")], schema=['first', 'second', 'third'])
# Setting an user define function:
# This function converts the string cell into a date:
func = udf (lambda x: datetime.strptime(x, '%m/%d/%Y'), DateType())
df = df1.withColumn('test', func(col('first')))
df.show()
df.printSchema()
出力は次のとおりです。
+----------+----------+----------+----------+
| first| second| third| test|
+----------+----------+----------+----------+
|11/25/1991|11/24/1991|11/30/1991|1991-01-25|
|11/25/1391|11/24/1992|11/30/1992|1391-01-17|
+----------+----------+----------+----------+
root
|-- first: string (nullable = true)
|-- second: string (nullable = true)
|-- third: string (nullable = true)
|-- test: date (nullable = true)
Strptime()アプローチは私にはうまくいきません。キャストを使用して、別のクリーナーソリューションを取得します。
from pyspark.sql.types import DateType
spark_df1 = spark_df.withColumn("record_date",spark_df['order_submitted_date'].cast(DateType()))
#below is the result
spark_df1.select('order_submitted_date','record_date').show(10,False)
+---------------------+-----------+
|order_submitted_date |record_date|
+---------------------+-----------+
|2015-08-19 12:54:16.0|2015-08-19 |
|2016-04-14 13:55:50.0|2016-04-14 |
|2013-10-11 18:23:36.0|2013-10-11 |
|2015-08-19 20:18:55.0|2015-08-19 |
|2015-08-20 12:07:40.0|2015-08-20 |
|2013-10-11 21:24:12.0|2013-10-11 |
|2013-10-11 23:29:28.0|2013-10-11 |
|2015-08-20 16:59:35.0|2015-08-20 |
|2015-08-20 17:32:03.0|2015-08-20 |
|2016-04-13 16:56:21.0|2016-04-13 |
受け入れられた回答の更新では、to_date
関数の例が表示されないため、それを使用する別のソリューションは次のようになります。
from pyspark.sql import functions as F
df = df.withColumn(
'new_date',
F.to_date(
F.unix_timestamp('STRINGCOLUMN', 'MM-dd-yyyy').cast('timestamp'))
おそらくあまり多くの答えがないので、誰かを助けることができる私のコードを共有しようと考えています
from pyspark.sql import SparkSession
from pyspark.sql.functions import to_date
spark = SparkSession.builder.appName("Python Spark SQL basic example")\
.config("spark.some.config.option", "some-value").getOrCreate()
df = spark.createDataFrame([('2019-06-22',)], ['t'])
df1 = df.select(to_date(df.t, 'yyyy-MM-dd').alias('dt'))
print df1
print df1.show()
出力
DataFrame[dt: date]
+----------+
| dt|
+----------+
|2019-06-22|
+----------+
日時を変換する場合は、上記のコードを日付に変換してからto_timestampを使用します。疑問がある場合はお知らせください。
これを試して:
df = spark.createDataFrame([('2018-07-27 10:30:00',)], ['Date_col'])
df.select(from_unixtime(unix_timestamp(df.Date_col, 'yyyy-MM-dd HH:mm:ss')).alias('dt_col'))
df.show()
+-------------------+
| Date_col|
+-------------------+
|2018-07-27 10:30:00|
+-------------------+