これはインタビューの質問です。整数の配列が与えられた場合、最大値を見つけます。と分。最小比較を使用します。
明らかに、最悪の場合は配列を2回ループして~2n
比較を使用できますが、もっとうまくやりたいと思います。
1. Pick 2 elements(a, b), compare them. (say a > b)
2. Update min by comparing (min, b)
3. Update max by comparing (max, a)
この方法では、2つの要素に対して3つの比較を行い、3N/2
N
要素の合計比較。
Srbh.kmrによる答えを改善しようとしています。シーケンスがあるとしましょう:
A = [a1, a2, a3, a4, a5]
a1
とa2
を比較し、min12
、max12
を計算します。
if (a1 > a2)
min12 = a2
max12 = a1
else
min12 = a1
max12 = a2
同様に、min34
、max34
を計算します。 a5
は単独なので、そのままにしてください...
min12
とmin34
を比較してmin14
を計算し、同様にmax14
を計算します。最後にmin14
とa5
を比較して、min15
を計算します。同様にmax15
を計算します。
合計でわずか6回の比較です!
このソリューションは、任意の長さの配列に拡張できます。おそらく、マージソートの同様のアプローチで実装できます(配列を半分に分割し、それぞれの半分についてmin
max
を計算します)。
UPDATE:Cの再帰コードは次のとおりです。
#include <stdio.h>
void minmax (int* a, int i, int j, int* min, int* max) {
int lmin, lmax, rmin, rmax, mid;
if (i == j) {
*min = a[i];
*max = a[j];
} else if (j == i + 1) {
if (a[i] > a[j]) {
*min = a[j];
*max = a[i];
} else {
*min = a[i];
*max = a[j];
}
} else {
mid = (i + j) / 2;
minmax(a, i, mid, &lmin, &lmax);
minmax(a, mid + 1, j, &rmin, &rmax);
*min = (lmin > rmin) ? rmin : lmin;
*max = (lmax > rmax) ? lmax : rmax;
}
}
void main () {
int a [] = {3, 4, 2, 6, 8, 1, 9, 12, 15, 11};
int min, max;
minmax (a, 0, 9, &min, &max);
printf ("Min : %d, Max: %d\n", min, max);
}
これで、N
(配列内の要素の数)の観点から正確な比較数を決定できません。しかし、この多くの比較をどのように下すことができるかを見るのは難しいです。
UPDATE:以下のような比較の数を計算できます。
この計算ツリーの下部で、元の配列から整数のペアを形成します。したがって、N / 2
リーフノードがあります。これらのリーフノードのそれぞれに対して、正確に1つの比較を行います。
perfect-binary-tree のプロパティを参照すると、次のようになります。
leaf nodes (L) = N / 2 // known
total nodes (n) = 2L - 1 = N - 1
internal nodes = n - L = N / 2 - 1
内部ノードごとに2つの比較を行います。したがって、N - 2
比較があります。リーフノードでのN / 2
比較に加えて、(3N / 2) - 2
合計比較があります。
だから、これは彼の答えで示唆された解決策srbh.kmrかもしれません。
分割して征服しよう!
1,3,2,5
この結果の最小値、最大値は6回比較されます
しかしそれらを分ける
1,3 ---> will give min 1 and max 3 in one comparison
2,5 ---> will give min 2 and max 5 in one comparison
これで、2つの最小値と最大値を比較できます
min(1,2) --> will give the final min as 1 (one comparison)
max(3,5) ---> will give the final max as 5 (one comparison)
合計4回の比較で、最小値と最大値の両方を見つけます。
比較の代わりに整数演算を使用する、多少異なるアプローチ(明示的に禁止されていませんでした)
for(int i=0;i<N;i++) {
xmin += x[i]-xmin & x[i]-xmin>>31;
xmax += x[i]-xmax & xmax-x[i]>>31;
}
ブルートフォースはより高速です!
ここで、私のやり方の誤りを見せてくれる人が欲しいのですが、…
ブルートフォース法の実際の実行時間と(より美しい)再帰的な分割と征服を比較しました。典型的な結果(各関数への10,000,000回の呼び出し):
Brute force :
0.657 seconds 10 values => 16 comparisons. Min @ 8, Max @ 10
0.604 seconds 1000000 values => 1999985 comparisons. Min @ 983277, Max @ 794659
Recursive :
1.879 seconds 10 values => 13 comparisons. Min @ 8, Max @ 10
2.041 seconds 1000000 values => 1499998 comparisons. Min @ 983277, Max @ 794659
驚くべきことに、ブルートフォース法は、10個のアイテムの配列で約2.9倍、1,000,000個のアイテムの配列で3.4倍高速でした。
明らかに、比較の数は問題ではなく、再割り当ての数と、再帰関数を呼び出すオーバーヘッドの可能性があります(1,000,000の値が10の値よりも遅い理由を説明するかもしれません)。
警告:私はこれをCではなくVBAで行いました。倍精度の数値を比較し、インデックスを最小値と最大値の配列に返していました。
私が使用したコードは次のとおりです(クラスcPerformanceCounterはここには含まれていませんが、高解像度のタイミングにQueryPerformanceCounterを使用しています)。
Option Explicit
'2014.07.02
Private m_l_NumberOfComparisons As Long
Sub Time_MinMax()
Const LBOUND_VALUES As Long = 1
Dim l_pcOverall As cPerformanceCounter
Dim l_d_Values() As Double
Dim i As Long, _
k As Long, _
l_l_UBoundValues As Long, _
l_l_NumberOfIterations As Long, _
l_l_IndexOfMin As Long, _
l_l_IndexOfMax As Long
Set l_pcOverall = New cPerformanceCounter
For k = 1 To 2
l_l_UBoundValues = IIf(k = 1, 10, 1000000)
ReDim l_d_Values(LBOUND_VALUES To l_l_UBoundValues)
'Assign random values
Randomize '1 '1 => the same random values to be used each time
For i = LBOUND_VALUES To l_l_UBoundValues
l_d_Values(i) = Rnd
Next i
For i = LBOUND_VALUES To l_l_UBoundValues
l_d_Values(i) = Rnd
Next i
'This keeps the total run time in the one-second neighborhood
l_l_NumberOfIterations = 10000000 / l_l_UBoundValues
'——————— Time Brute Force Method —————————————————————————————————————————
l_pcOverall.RestartTimer
For i = 1 To l_l_NumberOfIterations
m_l_NumberOfComparisons = 0
IndexOfMinAndMaxDoubleBruteForce _
l_d_Values, _
LBOUND_VALUES, _
l_l_UBoundValues, _
l_l_IndexOfMin, _
l_l_IndexOfMax
Next
l_pcOverall.ElapsedSecondsDebugPrint _
3.3, , _
" seconds Brute-Force " & l_l_UBoundValues & " values => " _
& m_l_NumberOfComparisons & " comparisons. " _
& " Min @ " & l_l_IndexOfMin _
& ", Max @ " & l_l_IndexOfMax, _
True
'——————— End Time Brute Force Method —————————————————————————————————————
'——————— Time Brute Force Using Individual Calls —————————————————————————
l_pcOverall.RestartTimer
For i = 1 To l_l_NumberOfIterations
m_l_NumberOfComparisons = 0
l_l_IndexOfMin = IndexOfMinDouble(l_d_Values)
l_l_IndexOfMax = IndexOfMaxDouble(l_d_Values)
Next
l_pcOverall.ElapsedSecondsDebugPrint _
3.3, , _
" seconds Individual " & l_l_UBoundValues & " values => " _
& m_l_NumberOfComparisons & " comparisons. " _
& " Min @ " & l_l_IndexOfMin _
& ", Max @ " & l_l_IndexOfMax, _
True
'——————— End Time Brute Force Using Individual Calls —————————————————————
'——————— Time Recursive Divide and Conquer Method ————————————————————————
l_pcOverall.RestartTimer
For i = 1 To l_l_NumberOfIterations
m_l_NumberOfComparisons = 0
IndexOfMinAndMaxDoubleRecursiveDivideAndConquer _
l_d_Values, _
LBOUND_VALUES, _
l_l_UBoundValues, _
l_l_IndexOfMin, l_l_IndexOfMax
Next
l_pcOverall.ElapsedSecondsDebugPrint _
3.3, , _
" seconds Recursive " & l_l_UBoundValues & " values => " _
& m_l_NumberOfComparisons & " comparisons. " _
& " Min @ " & l_l_IndexOfMin _
& ", Max @ " & l_l_IndexOfMax, _
True
'——————— End Time Recursive Divide and Conquer Method ————————————————————
Next k
End Sub
'Recursive divide and conquer
Sub IndexOfMinAndMaxDoubleRecursiveDivideAndConquer( _
i_dArray() As Double, _
i_l_LBound As Long, _
i_l_UBound As Long, _
o_l_IndexOfMin As Long, _
o_l_IndexOfMax As Long)
Dim l_l_IndexOfLeftMin As Long, _
l_l_IndexOfLeftMax As Long, _
l_l_IndexOfRightMin As Long, _
l_l_IndexOfRightMax As Long, _
l_l_IndexOfMidPoint As Long
If (i_l_LBound = i_l_UBound) Then 'Only one element
o_l_IndexOfMin = i_l_LBound
o_l_IndexOfMax = i_l_LBound
ElseIf (i_l_UBound = (i_l_LBound + 1)) Then 'Only two elements
If (i_dArray(i_l_LBound) > i_dArray(i_l_UBound)) Then
o_l_IndexOfMin = i_l_UBound
o_l_IndexOfMax = i_l_LBound
Else
o_l_IndexOfMin = i_l_LBound
o_l_IndexOfMax = i_l_UBound
End If
m_l_NumberOfComparisons = m_l_NumberOfComparisons + 1
Else 'More than two elements => recurse
l_l_IndexOfMidPoint = (i_l_LBound + i_l_UBound) / 2
'Find the min of the elements in the left half
IndexOfMinAndMaxDoubleRecursiveDivideAndConquer _
i_dArray, _
i_l_LBound, _
l_l_IndexOfMidPoint, _
l_l_IndexOfLeftMin, _
l_l_IndexOfLeftMax
'Find the min of the elements in the right half
IndexOfMinAndMaxDoubleRecursiveDivideAndConquer i_dArray, _
l_l_IndexOfMidPoint + 1, _
i_l_UBound, _
l_l_IndexOfRightMin, _
l_l_IndexOfRightMax
'Return the index of the lower of the two values returned
If (i_dArray(l_l_IndexOfLeftMin) > i_dArray(l_l_IndexOfRightMin)) Then
o_l_IndexOfMin = l_l_IndexOfRightMin
Else
o_l_IndexOfMin = l_l_IndexOfLeftMin
End If
m_l_NumberOfComparisons = m_l_NumberOfComparisons + 1
'Return the index of the lower of the two values returned
If (i_dArray(l_l_IndexOfLeftMax) > i_dArray(l_l_IndexOfRightMax)) Then
o_l_IndexOfMax = l_l_IndexOfLeftMax
Else
o_l_IndexOfMax = l_l_IndexOfRightMax
End If
m_l_NumberOfComparisons = m_l_NumberOfComparisons + 1
End If
End Sub
Sub IndexOfMinAndMaxDoubleBruteForce( _
i_dArray() As Double, _
i_l_LBound As Long, _
i_l_UBound As Long, _
o_l_IndexOfMin As Long, _
o_l_IndexOfMax As Long)
Dim i As Long
o_l_IndexOfMin = i_l_LBound
o_l_IndexOfMax = o_l_IndexOfMin
For i = i_l_LBound + 1 To i_l_UBound
'Usually we will do two comparisons
m_l_NumberOfComparisons = m_l_NumberOfComparisons + 2
If (i_dArray(i) < i_dArray(o_l_IndexOfMin)) Then
o_l_IndexOfMin = i
'We don't need to do the ElseIf comparison
m_l_NumberOfComparisons = m_l_NumberOfComparisons - 1
ElseIf (i_dArray(i) > i_dArray(o_l_IndexOfMax)) Then
o_l_IndexOfMax = i
End If
Next i
End Sub
Function IndexOfMinDouble( _
i_dArray() As Double _
) As Long
Dim i As Long
On Error GoTo EWE
IndexOfMinDouble = LBound(i_dArray)
For i = IndexOfMinDouble + 1 To UBound(i_dArray)
If (i_dArray(i) < i_dArray(IndexOfMinDouble)) Then
IndexOfMinDouble = i
End If
m_l_NumberOfComparisons = m_l_NumberOfComparisons + 1
Next i
On Error GoTo 0
Exit Function
EWE:
On Error GoTo 0
IndexOfMinDouble = MIN_LONG
End Function
Function IndexOfMaxDouble( _
i_dArray() As Double _
) As Long
Dim i As Long
On Error GoTo EWE
IndexOfMaxDouble = LBound(i_dArray)
For i = IndexOfMaxDouble + 1 To UBound(i_dArray)
If (i_dArray(i) > i_dArray(IndexOfMaxDouble)) Then
IndexOfMaxDouble = i
End If
m_l_NumberOfComparisons = m_l_NumberOfComparisons + 1
Next i
On Error GoTo 0
Exit Function
EWE:
On Error GoTo 0
IndexOfMaxDouble = MIN_LONG
End Function
質問と回答を読んだ後、いくつかのバージョン(C#)を試すことにしました。
最速はアントンクニャジエフのもの(ブランチフリー)であると思いましたが、そうではありません(私のボックスでは)。
結果:
/* comp. time(ns)
minmax0 3n/2 855
minmax1 2n 805
minmax2 2n 1315
minmax3 2n 685 */
なぜminmax1とminmax3が速いのですか?おそらく、「分岐予測子」がニースの仕事をするので、反復ごとにチャンス、新しい最小(または最大)が見つかる、減少するので、予測は良くなります。
全体としては、簡単なテストです。私の結論は次のようになります。
-時期尚早。
-異なるプラットフォームでは無効です。
それらは指標であるとしましょう。
編集:損益分岐点minmax0、minmax3:〜100アイテム、
10,000個のアイテム:minmax3はminmax0よりも3.5倍高速です。
using System;
using sw = System.Diagnostics.Stopwatch;
class Program
{
static void Main()
{
int n = 1000;
int[] a = buildA(n);
sw sw = new sw();
sw.Start();
for (int i = 1000000; i > 0; i--) minMax3(a);
sw.Stop();
Console.Write(sw.ElapsedMilliseconds);
Console.Read();
}
static int[] minMax0(int[] a) // ~3j/2 comp.
{
int j = a.Length - 1;
if (j < 2) return j < 0 ? null :
j < 1 ? new int[] { a[0], a[0] } :
a[0] < a[1] ? new int[] { a[0], a[1] } :
new int[] { a[1], a[0] };
int a0 = a[0], a1 = a[1], ai = a0;
if (a1 < a0) { a0 = a1; a1 = ai; }
int i = 2;
for (int aj; i < j; i += 2)
{
if ((ai = a[i]) < (aj = a[i + 1])) // hard to predict
{ if (ai < a0) a0 = ai; if (aj > a1) a1 = aj; }
else
{ if (aj < a0) a0 = aj; if (ai > a1) a1 = ai; }
}
if (i <= j)
{ if ((ai = a[i]) < a0) a0 = ai; else if (ai > a1) a1 = ai; }
return new int[] { a0, a1 };
}
static int[] minMax1(int[] a) // ~2j comp.
{
int j = a.Length;
if (j < 3) return j < 1 ? null :
j < 2 ? new int[] { a[0], a[0] } :
a[0] < a[1] ? new int[] { a[0], a[1] } :
new int[] { a[1], a[0] };
int a0 = a[0], a1 = a0, ai = a0;
for (int i = 1; i < j; i++)
{
if ((ai = a[i]) < a0) a0 = ai;
else if (ai > a1) a1 = ai;
}
return new int[] { a0, a1 };
}
static int[] minMax2(int[] a) // ~2j comp.
{
int j = a.Length;
if (j < 2) return j == 0 ? null : new int[] { a[0], a[0] };
int a0 = a[0], a1 = a0;
for (int i = 1, ai = a[1], aj = ai; ; aj = ai = a[i])
{
ai -= a0; a0 += ai & ai >> 31;
aj -= a1; a1 += aj & -aj >> 31;
i++; if (i >= j) break;
}
return new int[] { a0, a1 };
}
static int[] minMax3(int[] a) // ~2j comp.
{
int j = a.Length - 1;
if (j < 2) return j < 0 ? null :
j < 1 ? new int[] { a[0], a[0] } :
a[0] < a[1] ? new int[] { a[0], a[1] } :
new int[] { a[1], a[0] };
int a0 = a[0], a1 = a[1], ai = a0;
if (a1 < a0) { a0 = a1; a1 = ai; }
int i = 2;
for (j -= 2; i < j; i += 3)
{
ai = a[i + 0]; if (ai < a0) a0 = ai; if (ai > a1) a1 = ai;
ai = a[i + 1]; if (ai < a0) a0 = ai; if (ai > a1) a1 = ai;
ai = a[i + 2]; if (ai < a0) a0 = ai; if (ai > a1) a1 = ai;
}
for (j += 2; i <= j; i++)
{ if ((ai = a[i]) < a0) a0 = ai; else if (ai > a1) a1 = ai; }
return new int[] { a0, a1 };
}
static int[] buildA(int n)
{
int[] a = new int[n--]; Random Rand = new Random(0);
for (int j = n; n >= 0; n--) a[n] = Rand.Next(-1 * j, 1 * j);
return a;
}
}
再帰アルゴリズムの簡単な擬似コード:
Function MAXMIN (A, low, high)
if (high − low + 1 = 2) then
if (A[low] < A[high]) then
max = A[high]; min = A[low].
return((max, min)).
else
max = A[low]; min = A[high].
return((max, min)).
end if
else
mid = low+high/2
(max_l , min_l ) = MAXMIN(A, low, mid).
(max_r , min_r ) =MAXMIN(A, mid + 1, high).
end if
Set max to the larger of max_l and max_r ;
likewise, set min to the smaller of min_l and min_r .
return((max, min)).
Javaこれまでの分割統治アプローチ:
public class code {
static int[] A = {444,9,8,6,199,3,0,5,3,200};
static int min = A[0], max = A[1];
static int count = 0;
public void minMax(int[] A, int i, int j) {
if(i==j) {
count = count + 2;
min = Math.min(min, A[i]);
max = Math.max(max, A[i]);
}
else if(j == i+1) {
if(A[i] > A[j]) {
count = count + 3;
min = Math.min(min, A[j]);
max = Math.max(max, A[i]);
}
else {
count = count + 3;
min = Math.min(min, A[i]);
max = Math.max(max, A[j]);
}
}
else {
minMax(A,i,(i+j)/2);
minMax(A,(i+j)/2+1,j);
}
}
public static void main(String[] args) {
code c = new code();
if(Math.min(A[0], A[1]) == A[0]) {
count++;
min = A[0];
max = A[1];
}
else {
count++;
min = A[1];
max = A[0];
}
c.minMax(A,2,A.length-1);
System.out.println("Min: "+min+" Max: "+max);
System.out.println("Total comparisons: " + count);
}
}
#include<bits/stdc++.h>
using namespace std;
int main()
{
int n;
cin>>n;
set<int> t;
for(int i=0;i<n;i++)
{
int x;
cin>>x;
t.insert(x);
}
set<int>::iterator s,b;
s=t.begin();
b=--t.end();
cout<< *s<<" "<<*b<<endl;
enter code here
return 0;
}
//これはlog(n)の複雑さで行えます!!!
public static int[] minMax(int[] array){
int [] empty = {-1,-1};
if(array==null || array.length==0){
return empty;
}
int lo =0, hi = array.length-1;
return minMax(array,lo, hi);
}
private static int[] minMax(int []array, int lo, int hi){
if(lo==hi){
int [] result = {array[lo], array[hi]};
return result;
}else if(lo+1==hi){
int [] result = new int[2];
result[0] = Math.min(array[lo], array[hi]);
result[1] = Math.max(array[lo], array[hi]);
return result;
}else{
int mid = lo+(hi-lo)/2;
int [] left = minMax(array, lo, mid);
int [] right = minMax(array, mid+1, hi);
int []result = new int[2];
result[0] = Math.min(left[0], right[0]);
result[1] = Math.max(left[1], right[1]);
return result;
}
}
public static void main(String[] args) {
int []array = {1,2,3,4,100};
System.out.println("min and max values are "+Arrays.toString(minMax(array)));
}
import Java.util.*;
class Maxmin
{
public static void main(String args[])
{
int[] arr = new int[10];
Scanner in = new Scanner(System.in);
int i, min=0, max=0;
for(i=0; i<=9; i++)
{
System.out.print("Enter any number: ");
arr[i] = in.nextInt();
}
min = arr[0];
for(i=0; i<=9; i++)
{
if(arr[i] > max)
{
max = arr[i];
}
if(arr[i] < min)
{
min = arr[i];
}
}
System.out.println("Maximum is: " + max);
System.out.println("Minimum is: " + min);
}
}