web-dev-qa-db-ja.com

グラフで明確に異なるRGBカラーを生成します

グラフを生成してさまざまなデータのセットを表示する場合、通常はセットを色で区別することをお勧めします。したがって、1行は赤で、次の行は緑などです。問題は、データセットの数が不明な場合、これらの色をランダムに生成する必要があり、多くの場合、それらが互いに非常に近くなることです(緑、明るい緑など)。

これをどのように解決でき、明らかに異なる色を生成することができるかについてのアイデアはありますか?

C#およびRGBベースの色の例(例の方が簡単な場合は、例なしで問題と解決策を簡単に説明してください)があればいいと思います。

77
Riri

3つのカラーチャネル0〜255のR、G、Bがあります。

最初に通過する

0, 0, 255
0, 255, 0
255, 0, 0

その後、通過します

0, 255, 255
255, 0, 255
255, 255, 0

次に、2 => 128で除算して、もう一度開始します。

0, 0, 128
0, 128, 0
128, 0, 0
0, 128, 128
128, 0, 128
128, 128, 0

2で除算=> 64

次回は64を128に追加=> 192

パターンに従ってください。

プログラムが簡単で、かなり明確な色を提供します。

編集:コードサンプルのリクエスト

また、グレーが許容可能な色である場合、以下の追加パターンを追加します。

255, 255, 255
128, 128, 128 

コードでこれらの生成を処理する方法はいくつかあります。

簡単な方法

固定された数を超える色が必要ないことを保証できる場合は、このパターンに従って色の配列を生成し、それらを使用します。

    static string[] ColourValues = new string[] { 
        "FF0000", "00FF00", "0000FF", "FFFF00", "FF00FF", "00FFFF", "000000", 
        "800000", "008000", "000080", "808000", "800080", "008080", "808080", 
        "C00000", "00C000", "0000C0", "C0C000", "C000C0", "00C0C0", "C0C0C0", 
        "400000", "004000", "000040", "404000", "400040", "004040", "404040", 
        "200000", "002000", "000020", "202000", "200020", "002020", "202020", 
        "600000", "006000", "000060", "606000", "600060", "006060", "606060", 
        "A00000", "00A000", "0000A0", "A0A000", "A000A0", "00A0A0", "A0A0A0", 
        "E00000", "00E000", "0000E0", "E0E000", "E000E0", "00E0E0", "E0E0E0", 
    };

ハードウェイ

必要な色の数がわからない場合、以下のコードはこのパターンを使用して最大896色を生成します。 (896 = 256 * 7/2)256はチャネルごとの色空間です。7つのパターンがあり、1つの色値だけで区切られた色になる前に停止します。

おそらく、必要以上にこのコードの作業を一生懸命にしたでしょう。まず、255で始まり、上記のパターンに従って値を生成する強度ジェネレーターがあります。パターンジェネレーターは、7つのカラーパターンをループするだけです。

using System;

class Program {
    static void Main(string[] args) {
        ColourGenerator generator = new ColourGenerator();
        for (int i = 0; i < 896; i++) {
            Console.WriteLine(string.Format("{0}: {1}", i, generator.NextColour()));
        }
    }
}

public class ColourGenerator {

    private int index = 0;
    private IntensityGenerator intensityGenerator = new IntensityGenerator();

    public string NextColour() {
        string colour = string.Format(PatternGenerator.NextPattern(index),
            intensityGenerator.NextIntensity(index));
        index++;
        return colour;
    }
}

public class PatternGenerator {
    public static string NextPattern(int index) {
        switch (index % 7) {
        case 0: return "{0}0000";
        case 1: return "00{0}00";
        case 2: return "0000{0}";
        case 3: return "{0}{0}00";
        case 4: return "{0}00{0}";
        case 5: return "00{0}{0}";
        case 6: return "{0}{0}{0}";
        default: throw new Exception("Math error");
        }
    }
}

public class IntensityGenerator {
    private IntensityValueWalker walker;
    private int current;

    public string NextIntensity(int index) {
        if (index == 0) {
            current = 255;
        }
        else if (index % 7 == 0) {
            if (walker == null) {
                walker = new IntensityValueWalker();
            }
            else {
                walker.MoveNext();
            }
            current = walker.Current.Value;
        }
        string currentText = current.ToString("X");
        if (currentText.Length == 1) currentText = "0" + currentText;
        return currentText;
    }
}

public class IntensityValue {

    private IntensityValue mChildA;
    private IntensityValue mChildB;

    public IntensityValue(IntensityValue parent, int value, int level) {
        if (level > 7) throw new Exception("There are no more colours left");
        Value = value;
        Parent = parent;
        Level = level;
    }

    public int Level { get; set; }
    public int Value { get; set; }
    public IntensityValue Parent { get; set; }

    public IntensityValue ChildA {
        get {
            return mChildA ?? (mChildA = new IntensityValue(this, this.Value - (1<<(7-Level)), Level+1));
        }
    }

    public IntensityValue ChildB {
        get {
            return mChildB ?? (mChildB = new IntensityValue(this, Value + (1<<(7-Level)), Level+1));
        }
    }
}

public class IntensityValueWalker {

    public IntensityValueWalker() {
        Current = new IntensityValue(null, 1<<7, 1);
    }

    public IntensityValue Current { get; set; }

    public void MoveNext() {
        if (Current.Parent == null) {
            Current = Current.ChildA;
        }
        else if (Current.Parent.ChildA == Current) {
            Current = Current.Parent.ChildB;
        }
        else {
            int levelsUp = 1;
            Current = Current.Parent;
            while (Current.Parent != null && Current == Current.Parent.ChildB) {
                Current = Current.Parent;
                levelsUp++;
            }
            if (Current.Parent != null) {
                Current = Current.Parent.ChildB;
            }
            else {
                levelsUp++;
            }
            for (int i = 0; i < levelsUp; i++) {
                Current = Current.ChildA;
            }

        }
    }
}
128
Sam Meldrum

色が変わるバリエーションリストを実装するには、255でその可能性をすべて使用し、0とこれら2つの値を持つすべてのRGBパターンを追加します。次に、128個とすべてのRGBの組み合わせを追加します。次に64。次に192など。

Javaでは、

public Color getColor(int i) {
    return new Color(getRGB(i));
}

public int getRGB(int index) {
    int[] p = getPattern(index);
    return getElement(p[0]) << 16 | getElement(p[1]) << 8 | getElement(p[2]);
}

public int getElement(int index) {
    int value = index - 1;
    int v = 0;
    for (int i = 0; i < 8; i++) {
        v = v | (value & 1);
        v <<= 1;
        value >>= 1;
    }
    v >>= 1;
    return v & 0xFF;
}

public int[] getPattern(int index) {
    int n = (int)Math.cbrt(index);
    index -= (n*n*n);
    int[] p = new int[3];
    Arrays.fill(p,n);
    if (index == 0) {
        return p;
    }
    index--;
    int v = index % 3;
    index = index / 3;
    if (index < n) {
        p[v] = index % n;
        return p;
    }
    index -= n;
    p[v      ] = index / n;
    p[++v % 3] = index % n;
    return p;
}

これにより、そのタイプのパターンが将来(2 ^ 24)無限に生成されます。ただし、100個ほどのスポットを置いた後は、青の場所に0または32がある色とほとんど違いが見られないでしょう。

これを別の色空間に正規化する方が良いかもしれません。たとえば、正規化および変換されたL、A、B値を持つLAB色空間。そのため、色の明瞭さは、人間の目に似たものを通して押し出されます。

getElement()は、8ビット数のエンディアンを反転し、0ではなく-1からカウントを開始します(255でマスクします)。したがって、255,0,127,192,64、...になります。数字が大きくなるにつれて、ビットの動きが少なくなり、数字が細分化されます。

getPattern()は、パターンで最も重要な要素(キューブルート)を決定します。次に、その最も重要な要素を含む3N²+ 3N + 1のさまざまなパターンの分解に進みます。

このアルゴリズムは以下を生成します(最初の128個の値):

#FFFFFF 
#000000 
#FF0000 
#00FF00 
#0000FF 
#FFFF00 
#00FFFF 
#FF00FF 
#808080 
#FF8080 
#80FF80 
#8080FF 
#008080 
#800080 
#808000 
#FFFF80 
#80FFFF 
#FF80FF 
#FF0080 
#80FF00 
#0080FF 
#00FF80 
#8000FF 
#FF8000 
#000080 
#800000 
#008000 
#404040 
#FF4040 
#40FF40 
#4040FF 
#004040 
#400040 
#404000 
#804040 
#408040 
#404080 
#FFFF40 
#40FFFF 
#FF40FF 
#FF0040 
#40FF00 
#0040FF 
#FF8040 
#40FF80 
#8040FF 
#00FF40 
#4000FF 
#FF4000 
#000040 
#400000 
#004000 
#008040 
#400080 
#804000 
#80FF40 
#4080FF 
#FF4080 
#800040 
#408000 
#004080 
#808040 
#408080 
#804080 
#C0C0C0 
#FFC0C0 
#C0FFC0 
#C0C0FF 
#00C0C0 
#C000C0 
#C0C000 
#80C0C0 
#C080C0 
#C0C080 
#40C0C0 
#C040C0 
#C0C040 
#FFFFC0 
#C0FFFF 
#FFC0FF 
#FF00C0 
#C0FF00 
#00C0FF 
#FF80C0 
#C0FF80 
#80C0FF 
#FF40C0 
#C0FF40 
#40C0FF 
#00FFC0 
#C000FF 
#FFC000 
#0000C0 
#C00000 
#00C000 
#0080C0 
#C00080 
#80C000 
#0040C0 
#C00040 
#40C000 
#80FFC0 
#C080FF 
#FFC080 
#8000C0 
#C08000 
#00C080 
#8080C0 
#C08080 
#80C080 
#8040C0 
#C08040 
#40C080 
#40FFC0 
#C040FF 
#FFC040 
#4000C0 
#C04000 
#00C040 
#4080C0 
#C04080 
#80C040 
#4040C0 
#C04040 
#40C040 
#202020 
#FF2020 
#20FF20 

左から右、上から下に読みます。 729色(9³)。したがって、n = 9までのすべてのパターンは、それらが衝突し始める速度に気付くでしょう。 WRGBCYMKバリエーションは非常に多くあります。そして、このソリューションは、基本的には賢いのですが、原色の異なる色合いだけを行います。

Color Grid, 729 16x16

衝突の大部分は緑に起因し、ほとんどの緑がほとんどの人にどのように見えるかです。同じ色にならないほど異なるだけでなく、開始時にそれぞれが最大限に異なるという要求。そして、原色パターンと同一の色相をもたらすアイデアの基本的な欠陥。


CIELab2000色空間と距離ルーチンを使用して、10,000個の異なる色をランダムに選択して試して、前の色から最大距離の最小距離を見つけます(要求の定義とほぼ同じ)。上記のソリューションよりも長い衝突を回避できます。

Max Color Distance

Easy Wayの静的リストと呼ぶこともできます。 729エントリを生成するのに1時間半かかりました。

#9BC4E5
#310106
#04640D
#FEFB0A
#FB5514
#E115C0
#00587F
#0BC582
#FEB8C8
#9E8317
#01190F
#847D81
#58018B
#B70639
#703B01
#F7F1DF
#118B8A
#4AFEFA
#FCB164
#796EE6
#000D2C
#53495F
#F95475
#61FC03
#5D9608
#DE98FD
#98A088
#4F584E
#248AD0
#5C5300
#9F6551
#BCFEC6
#932C70
#2B1B04
#B5AFC4
#D4C67A
#AE7AA1
#C2A393
#0232FD
#6A3A35
#BA6801
#168E5C
#16C0D0
#C62100
#014347
#233809
#42083B
#82785D
#023087
#B7DAD2
#196956
#8C41BB
#ECEDFE
#2B2D32
#94C661
#F8907D
#895E6B
#788E95
#FB6AB8
#576094
#DB1474
#8489AE
#860E04
#FBC206
#6EAB9B
#F2CDFE
#645341
#760035
#647A41
#496E76
#E3F894
#F9D7CD
#876128
#A1A711
#01FB92
#FD0F31
#BE8485
#C660FB
#120104
#D48958
#05AEE8
#C3C1BE
#9F98F8
#1167D9
#D19012
#B7D802
#826392
#5E7A6A
#B29869
#1D0051
#8BE7FC
#76E0C1
#BACFA7
#11BA09
#462C36
#65407D
#491803
#F5D2A8
#03422C
#72A46E
#128EAC
#47545E
#B95C69
#A14D12
#C4C8FA
#372A55
#3F3610
#D3A2C6
#719FFA
#0D841A
#4C5B32
#9DB3B7
#B14F8F
#747103
#9F816D
#D26A5B
#8B934B
#F98500
#002935
#D7F3FE
#FCB899
#1C0720
#6B5F61
#F98A9D
#9B72C2
#A6919D
#2C3729
#D7C70B
#9F9992
#EFFBD0
#FDE2F1
#923A52
#5140A7
#BC14FD
#6D706C
#0007C4
#C6A62F
#000C14
#904431
#600013
#1C1B08
#693955
#5E7C99
#6C6E82
#D0AFB3
#493B36
#AC93CE
#C4BA9C
#09C4B8
#69A5B8
#374869
#F868ED
#E70850
#C04841
#C36333
#700366
#8A7A93
#52351D
#B503A2
#D17190
#A0F086
#7B41FC
#0EA64F
#017499
#08A882
#7300CD
#A9B074
#4E6301
#AB7E41
#547FF4
#134DAC
#FDEC87
#056164
#FE12A0
#C264BA
#939DAD
#0BCDFA
#277442
#1BDE4A
#826958
#977678
#BAFCE8
#7D8475
#8CCF95
#726638
#FEA8EB
#EAFEF0
#6B9279
#C2FE4B
#304041
#1EA6A7
#022403
#062A47
#054B17
#F4C673
#02FEC7
#9DBAA8
#775551
#835536
#565BCC
#80D7D2
#7AD607
#696F54
#87089A
#664B19
#242235
#7DB00D
#BFC7D6
#D5A97E
#433F31
#311A18
#FDB2AB
#D586C9
#7A5FB1
#32544A
#EFE3AF
#859D96
#2B8570
#8B282D
#E16A07
#4B0125
#021083
#114558
#F707F9
#C78571
#7FB9BC
#FC7F4B
#8D4A92
#6B3119
#884F74
#994E4F
#9DA9D3
#867B40
#CED5C4
#1CA2FE
#D9C5B4
#FEAA00
#507B01
#A7D0DB
#53858D
#588F4A
#FBEEEC
#FC93C1
#D7CCD4
#3E4A02
#C8B1E2
#7A8B62
#9A5AE2
#896C04
#B1121C
#402D7D
#858701
#D498A6
#B484EF
#5C474C
#067881
#C0F9FC
#726075
#8D3101
#6C93B2
#A26B3F
#AA6582
#4F4C4F
#5A563D
#E83005
#32492D
#FC7272
#B9C457
#552A5B
#B50464
#616E79
#DCE2E4
#CF8028
#0AE2F0
#4F1E24
#FD5E46
#4B694E
#C5DEFC
#5DC262
#022D26
#7776B8
#FD9F66
#B049B8
#988F73
#BE385A
#2B2126
#54805A
#141B55
#67C09B
#456989
#DDC1D9
#166175
#C1E29C
#A397B5
#2E2922
#ABDBBE
#B4A6A8
#A06B07
#A99949
#0A0618
#B14E2E
#60557D
#D4A556
#82A752
#4A005B
#3C404F
#6E6657
#7E8BD5
#1275B8
#D79E92
#230735
#661849
#7A8391
#FE0F7B
#B0B6A9
#629591
#D05591
#97B68A
#97939A
#035E38
#53E19E
#DFD7F9
#02436C
#525A72
#059A0E
#3E736C
#AC8E87
#D10C92
#B9906E
#66BDFD
#C0ABFD
#0734BC
#341224
#8AAAC1
#0E0B03
#414522
#6A2F3E
#2D9A8A
#4568FD
#FDE6D2
#FEE007
#9A003C
#AC8190
#DCDD58
#B7903D
#1F2927
#9B02E6
#827A71
#878B8A
#8F724F
#AC4B70
#37233B
#385559
#F347C7
#9DB4FE
#D57179
#DE505A
#37F7DD
#503500
#1C2401
#DD0323
#00A4BA
#955602
#FA5B94
#AA766C
#B8E067
#6A807E
#4D2E27
#73BED7
#D7BC8A
#614539
#526861
#716D96
#829A17
#210109
#436C2D
#784955
#987BAB
#8F0152
#0452FA
#B67757
#A1659F
#D4F8D8
#48416F
#DEBAAF
#A5A9AA
#8C6B83
#403740
#70872B
#D9744D
#151E2C
#5C5E5E
#B47C02
#F4CBD0
#E49D7D
#DD9954
#B0A18B
#2B5308
#EDFD64
#9D72FC
#2A3351
#68496C
#C94801
#EED05E
#826F6D
#E0D6BB
#5B6DB4
#662F98
#0C97CA
#C1CA89
#755A03
#DFA619
#CD70A8
#BBC9C7
#F6BCE3
#A16462
#01D0AA
#87C6B3
#E7B2FA
#D85379
#643AD5
#D18AAE
#13FD5E
#B3E3FD
#C977DB
#C1A7BB
#9286CB
#A19B6A
#8FFED7
#6B1F17
#DF503A
#10DDD7
#9A8457
#60672F
#7D327D
#DD8782
#59AC42
#82FDB8
#FC8AE7
#909F6F
#B691AE
#B811CD
#BCB24E
#CB4BD9
#2B2304
#AA9501
#5D5096
#403221
#F9FAB4
#3990FC
#70DE7F
#95857F
#84A385
#50996F
#797B53
#7B6142
#81D5FE
#9CC428
#0B0438
#3E2005
#4B7C91
#523854
#005EA9
#F0C7AD
#ACB799
#FAC08E
#502239
#BFAB6A
#2B3C48
#0EB5D8
#8A5647
#49AF74
#067AE9
#F19509
#554628
#4426A4
#7352C9
#3F4287
#8B655E
#B480BF
#9BA74C
#5F514C
#CC9BDC
#BA7942
#1C4138
#3C3C3A
#29B09C
#02923F
#701D2B
#36577C
#3F00EA
#3D959E
#440601
#8AEFF3
#6D442A
#BEB1A8
#A11C02
#8383FE
#A73839
#DBDE8A
#0283B3
#888597
#32592E
#F5FDFA
#01191B
#AC707A
#B6BD03
#027B59
#7B4F08
#957737
#83727D
#035543
#6F7E64
#C39999
#52847A
#925AAC
#77CEDA
#516369
#E0D7D0
#FCDD97
#555424
#96E6B6
#85BB74
#5E2074
#BD5E48
#9BEE53
#1A351E
#3148CD
#71575F
#69A6D0
#391A62
#E79EA0
#1C0F03
#1B1636
#D20C39
#765396
#7402FE
#447F3E
#CFD0A8
#3A2600
#685AFC
#A4B3C6
#534302
#9AA097
#FD5154
#9B0085
#403956
#80A1A7
#6E7A9A
#605E6A
#86F0E2
#5A2B01
#7E3D43
#ED823B
#32331B
#424837
#40755E
#524F48
#B75807
#B40080
#5B8CA1
#FDCFE5
#CCFEAC
#755847
#CAB296
#C0D6E3
#2D7100
#D5E4DE
#362823
#69C63C
#AC3801
#163132
#4750A6
#61B8B2
#FCC4B5
#DEBA2E
#FE0449
#737930
#8470AB
#687D87
#D7B760
#6AAB86
#8398B8
#B7B6BF
#92C4A1
#B6084F
#853B5E
#D0BCBA
#92826D
#C6DDC6
#BE5F5A
#280021
#435743
#874514
#63675A
#E97963
#8F9C9E
#985262
#909081
#023508
#DDADBF
#D78493
#363900
#5B0120
#603C47
#C3955D
#AC61CB
#FD7BA7
#716C74
#8D895B
#071001
#82B4F2
#B6BBD8
#71887A
#8B9FE3
#997158
#65A6AB
#2E3067
#321301
#FEECCB
#3B5E72
#C8FE85
#A1DCDF
#CB49A6
#B1C5E4
#3E5EB0
#88AEA7
#04504C
#975232
#6786B9
#068797
#9A98C4
#A1C3C2
#1C3967
#DBEA07
#789658
#E7E7C6
#A6C886
#957F89
#752E62
#171518
#A75648
#01D26F
#0F535D
#047E76
#C54754
#5D6E88
#AB9483
#803B99
#FA9C48
#4A8A22
#654A5C
#965F86
#9D0CBB
#A0E8A0
#D3DBFA
#FD908F
#AEAB85
#A13B89
#F1B350
#066898
#948A42
#C8BEDE
#19252C
#7046AA
#E1EEFC
#3E6557
#CD3F26
#2B1925
#DDAD94
#C0B109
#37DFFE
#039676
#907468
#9E86A5
#3A1B49
#BEE5B7
#C29501
#9E3645
#DC580A
#645631
#444B4B
#FD1A63
#DDE5AE
#887800
#36006F
#3A6260
#784637
#FEA0B7
#A3E0D2
#6D6316
#5F7172
#B99EC7
#777A7E
#E0FEFD
#E16DC5
#01344B
#F8F8FC
#9F9FB5
#182617
#FE3D21
#7D0017
#822F21
#EFD9DC
#6E68C4
#35473E
#007523
#767667
#A6825D
#83DC5F
#227285
#A95E34
#526172
#979730
#756F6D
#716259
#E8B2B5
#B6C9BB
#9078DA
#4F326E
#B2387B
#888C6F
#314B5F
#E5B678
#38A3C6
#586148
#5C515B
#CDCCE1
#C8977F

ブルートフォースを使用して(CIELab Delta2000を使用して16,777,216のすべてのRGBカラーをテストする/黒から開始)、シリーズを生成します。これは約26で衝突し始めますが、目視検査と手動ドロップ(コンピューターでは実行できません)で30または40になる可能性があります。したがって、絶対最大値をプログラムで実行しても、数十個の異なる色しか作成できません。個別のリストが最善の策です。リストを使用すると、プログラムで作成するよりも多くの個別の色を取得できます。簡単な方法が最善の解決策です。色以外のデータを変更する他の方法との混合とマッチングを開始します。

Maximally Different

#000000
#00FF00
#0000FF
#FF0000
#01FFFE
#FFA6FE
#FFDB66
#006401
#010067
#95003A
#007DB5
#FF00F6
#FFEEE8
#774D00
#90FB92
#0076FF
#D5FF00
#FF937E
#6A826C
#FF029D
#FE8900
#7A4782
#7E2DD2
#85A900
#FF0056
#A42400
#00AE7E
#683D3B
#BDC6FF
#263400
#BDD393
#00B917
#9E008E
#001544
#C28C9F
#FF74A3
#01D0FF
#004754
#E56FFE
#788231
#0E4CA1
#91D0CB
#BE9970
#968AE8
#BB8800
#43002C
#DEFF74
#00FFC6
#FFE502
#620E00
#008F9C
#98FF52
#7544B1
#B500FF
#00FF78
#FF6E41
#005F39
#6B6882
#5FAD4E
#A75740
#A5FFD2
#FFB167
#009BFF
#E85EBE

更新:これを約1か月続けたので、1024のブルートフォースでした。 1024

public static final String[] indexcolors = new String[]{
        "#000000", "#FFFF00", "#1CE6FF", "#FF34FF", "#FF4A46", "#008941", "#006FA6", "#A30059",
        "#FFDBE5", "#7A4900", "#0000A6", "#63FFAC", "#B79762", "#004D43", "#8FB0FF", "#997D87",
        "#5A0007", "#809693", "#FEFFE6", "#1B4400", "#4FC601", "#3B5DFF", "#4A3B53", "#FF2F80",
        "#61615A", "#BA0900", "#6B7900", "#00C2A0", "#FFAA92", "#FF90C9", "#B903AA", "#D16100",
        "#DDEFFF", "#000035", "#7B4F4B", "#A1C299", "#300018", "#0AA6D8", "#013349", "#00846F",
        "#372101", "#FFB500", "#C2FFED", "#A079BF", "#CC0744", "#C0B9B2", "#C2FF99", "#001E09",
        "#00489C", "#6F0062", "#0CBD66", "#EEC3FF", "#456D75", "#B77B68", "#7A87A1", "#788D66",
        "#885578", "#FAD09F", "#FF8A9A", "#D157A0", "#BEC459", "#456648", "#0086ED", "#886F4C",
        "#34362D", "#B4A8BD", "#00A6AA", "#452C2C", "#636375", "#A3C8C9", "#FF913F", "#938A81",
        "#575329", "#00FECF", "#B05B6F", "#8CD0FF", "#3B9700", "#04F757", "#C8A1A1", "#1E6E00",
        "#7900D7", "#A77500", "#6367A9", "#A05837", "#6B002C", "#772600", "#D790FF", "#9B9700",
        "#549E79", "#FFF69F", "#201625", "#72418F", "#BC23FF", "#99ADC0", "#3A2465", "#922329",
        "#5B4534", "#FDE8DC", "#404E55", "#0089A3", "#CB7E98", "#A4E804", "#324E72", "#6A3A4C",
        "#83AB58", "#001C1E", "#D1F7CE", "#004B28", "#C8D0F6", "#A3A489", "#806C66", "#222800",
        "#BF5650", "#E83000", "#66796D", "#DA007C", "#FF1A59", "#8ADBB4", "#1E0200", "#5B4E51",
        "#C895C5", "#320033", "#FF6832", "#66E1D3", "#CFCDAC", "#D0AC94", "#7ED379", "#012C58",
        "#7A7BFF", "#D68E01", "#353339", "#78AFA1", "#FEB2C6", "#75797C", "#837393", "#943A4D",
        "#B5F4FF", "#D2DCD5", "#9556BD", "#6A714A", "#001325", "#02525F", "#0AA3F7", "#E98176",
        "#DBD5DD", "#5EBCD1", "#3D4F44", "#7E6405", "#02684E", "#962B75", "#8D8546", "#9695C5",
        "#E773CE", "#D86A78", "#3E89BE", "#CA834E", "#518A87", "#5B113C", "#55813B", "#E704C4",
        "#00005F", "#A97399", "#4B8160", "#59738A", "#FF5DA7", "#F7C9BF", "#643127", "#513A01",
        "#6B94AA", "#51A058", "#A45B02", "#1D1702", "#E20027", "#E7AB63", "#4C6001", "#9C6966",
        "#64547B", "#97979E", "#006A66", "#391406", "#F4D749", "#0045D2", "#006C31", "#DDB6D0",
        "#7C6571", "#9FB2A4", "#00D891", "#15A08A", "#BC65E9", "#FFFFFE", "#C6DC99", "#203B3C",
        "#671190", "#6B3A64", "#F5E1FF", "#FFA0F2", "#CCAA35", "#374527", "#8BB400", "#797868",
        "#C6005A", "#3B000A", "#C86240", "#29607C", "#402334", "#7D5A44", "#CCB87C", "#B88183",
        "#AA5199", "#B5D6C3", "#A38469", "#9F94F0", "#A74571", "#B894A6", "#71BB8C", "#00B433",
        "#789EC9", "#6D80BA", "#953F00", "#5EFF03", "#E4FFFC", "#1BE177", "#BCB1E5", "#76912F",
        "#003109", "#0060CD", "#D20096", "#895563", "#29201D", "#5B3213", "#A76F42", "#89412E",
        "#1A3A2A", "#494B5A", "#A88C85", "#F4ABAA", "#A3F3AB", "#00C6C8", "#EA8B66", "#958A9F",
        "#BDC9D2", "#9FA064", "#BE4700", "#658188", "#83A485", "#453C23", "#47675D", "#3A3F00",
        "#061203", "#DFFB71", "#868E7E", "#98D058", "#6C8F7D", "#D7BFC2", "#3C3E6E", "#D83D66",
        "#2F5D9B", "#6C5E46", "#D25B88", "#5B656C", "#00B57F", "#545C46", "#866097", "#365D25",
        "#252F99", "#00CCFF", "#674E60", "#FC009C", "#92896B", "#1E2324", "#DEC9B2", "#9D4948",
        "#85ABB4", "#342142", "#D09685", "#A4ACAC", "#00FFFF", "#AE9C86", "#742A33", "#0E72C5",
        "#AFD8EC", "#C064B9", "#91028C", "#FEEDBF", "#FFB789", "#9CB8E4", "#AFFFD1", "#2A364C",
        "#4F4A43", "#647095", "#34BBFF", "#807781", "#920003", "#B3A5A7", "#018615", "#F1FFC8",
        "#976F5C", "#FF3BC1", "#FF5F6B", "#077D84", "#F56D93", "#5771DA", "#4E1E2A", "#830055",
        "#02D346", "#BE452D", "#00905E", "#BE0028", "#6E96E3", "#007699", "#FEC96D", "#9C6A7D",
        "#3FA1B8", "#893DE3", "#79B4D6", "#7FD4D9", "#6751BB", "#B28D2D", "#E27A05", "#DD9CB8",
        "#AABC7A", "#980034", "#561A02", "#8F7F00", "#635000", "#CD7DAE", "#8A5E2D", "#FFB3E1",
        "#6B6466", "#C6D300", "#0100E2", "#88EC69", "#8FCCBE", "#21001C", "#511F4D", "#E3F6E3",
        "#FF8EB1", "#6B4F29", "#A37F46", "#6A5950", "#1F2A1A", "#04784D", "#101835", "#E6E0D0",
        "#FF74FE", "#00A45F", "#8F5DF8", "#4B0059", "#412F23", "#D8939E", "#DB9D72", "#604143",
        "#B5BACE", "#989EB7", "#D2C4DB", "#A587AF", "#77D796", "#7F8C94", "#FF9B03", "#555196",
        "#31DDAE", "#74B671", "#802647", "#2A373F", "#014A68", "#696628", "#4C7B6D", "#002C27",
        "#7A4522", "#3B5859", "#E5D381", "#FFF3FF", "#679FA0", "#261300", "#2C5742", "#9131AF",
        "#AF5D88", "#C7706A", "#61AB1F", "#8CF2D4", "#C5D9B8", "#9FFFFB", "#BF45CC", "#493941",
        "#863B60", "#B90076", "#003177", "#C582D2", "#C1B394", "#602B70", "#887868", "#BABFB0",
        "#030012", "#D1ACFE", "#7FDEFE", "#4B5C71", "#A3A097", "#E66D53", "#637B5D", "#92BEA5",
        "#00F8B3", "#BEDDFF", "#3DB5A7", "#DD3248", "#B6E4DE", "#427745", "#598C5A", "#B94C59",
        "#8181D5", "#94888B", "#FED6BD", "#536D31", "#6EFF92", "#E4E8FF", "#20E200", "#FFD0F2",
        "#4C83A1", "#BD7322", "#915C4E", "#8C4787", "#025117", "#A2AA45", "#2D1B21", "#A9DDB0",
        "#FF4F78", "#528500", "#009A2E", "#17FCE4", "#71555A", "#525D82", "#00195A", "#967874",
        "#555558", "#0B212C", "#1E202B", "#EFBFC4", "#6F9755", "#6F7586", "#501D1D", "#372D00",
        "#741D16", "#5EB393", "#B5B400", "#DD4A38", "#363DFF", "#AD6552", "#6635AF", "#836BBA",
        "#98AA7F", "#464836", "#322C3E", "#7CB9BA", "#5B6965", "#707D3D", "#7A001D", "#6E4636",
        "#443A38", "#AE81FF", "#489079", "#897334", "#009087", "#DA713C", "#361618", "#FF6F01",
        "#006679", "#370E77", "#4B3A83", "#C9E2E6", "#C44170", "#FF4526", "#73BE54", "#C4DF72",
        "#ADFF60", "#00447D", "#DCCEC9", "#BD9479", "#656E5B", "#EC5200", "#FF6EC2", "#7A617E",
        "#DDAEA2", "#77837F", "#A53327", "#608EFF", "#B599D7", "#A50149", "#4E0025", "#C9B1A9",
        "#03919A", "#1B2A25", "#E500F1", "#982E0B", "#B67180", "#E05859", "#006039", "#578F9B",
        "#305230", "#CE934C", "#B3C2BE", "#C0BAC0", "#B506D3", "#170C10", "#4C534F", "#224451",
        "#3E4141", "#78726D", "#B6602B", "#200441", "#DDB588", "#497200", "#C5AAB6", "#033C61",
        "#71B2F5", "#A9E088", "#4979B0", "#A2C3DF", "#784149", "#2D2B17", "#3E0E2F", "#57344C",
        "#0091BE", "#E451D1", "#4B4B6A", "#5C011A", "#7C8060", "#FF9491", "#4C325D", "#005C8B",
        "#E5FDA4", "#68D1B6", "#032641", "#140023", "#8683A9", "#CFFF00", "#A72C3E", "#34475A",
        "#B1BB9A", "#B4A04F", "#8D918E", "#A168A6", "#813D3A", "#425218", "#DA8386", "#776133",
        "#563930", "#8498AE", "#90C1D3", "#B5666B", "#9B585E", "#856465", "#AD7C90", "#E2BC00",
        "#E3AAE0", "#B2C2FE", "#FD0039", "#009B75", "#FFF46D", "#E87EAC", "#DFE3E6", "#848590",
        "#AA9297", "#83A193", "#577977", "#3E7158", "#C64289", "#EA0072", "#C4A8CB", "#55C899",
        "#E78FCF", "#004547", "#F6E2E3", "#966716", "#378FDB", "#435E6A", "#DA0004", "#1B000F",
        "#5B9C8F", "#6E2B52", "#011115", "#E3E8C4", "#AE3B85", "#EA1CA9", "#FF9E6B", "#457D8B",
        "#92678B", "#00CDBB", "#9CCC04", "#002E38", "#96C57F", "#CFF6B4", "#492818", "#766E52",
        "#20370E", "#E3D19F", "#2E3C30", "#B2EACE", "#F3BDA4", "#A24E3D", "#976FD9", "#8C9FA8",
        "#7C2B73", "#4E5F37", "#5D5462", "#90956F", "#6AA776", "#DBCBF6", "#DA71FF", "#987C95",
        "#52323C", "#BB3C42", "#584D39", "#4FC15F", "#A2B9C1", "#79DB21", "#1D5958", "#BD744E",
        "#160B00", "#20221A", "#6B8295", "#00E0E4", "#102401", "#1B782A", "#DAA9B5", "#B0415D",
        "#859253", "#97A094", "#06E3C4", "#47688C", "#7C6755", "#075C00", "#7560D5", "#7D9F00",
        "#C36D96", "#4D913E", "#5F4276", "#FCE4C8", "#303052", "#4F381B", "#E5A532", "#706690",
        "#AA9A92", "#237363", "#73013E", "#FF9079", "#A79A74", "#029BDB", "#FF0169", "#C7D2E7",
        "#CA8869", "#80FFCD", "#BB1F69", "#90B0AB", "#7D74A9", "#FCC7DB", "#99375B", "#00AB4D",
        "#ABAED1", "#BE9D91", "#E6E5A7", "#332C22", "#DD587B", "#F5FFF7", "#5D3033", "#6D3800",
        "#FF0020", "#B57BB3", "#D7FFE6", "#C535A9", "#260009", "#6A8781", "#A8ABB4", "#D45262",
        "#794B61", "#4621B2", "#8DA4DB", "#C7C890", "#6FE9AD", "#A243A7", "#B2B081", "#181B00",
        "#286154", "#4CA43B", "#6A9573", "#A8441D", "#5C727B", "#738671", "#D0CFCB", "#897B77",
        "#1F3F22", "#4145A7", "#DA9894", "#A1757A", "#63243C", "#ADAAFF", "#00CDE2", "#DDBC62",
        "#698EB1", "#208462", "#00B7E0", "#614A44", "#9BBB57", "#7A5C54", "#857A50", "#766B7E",
        "#014833", "#FF8347", "#7A8EBA", "#274740", "#946444", "#EBD8E6", "#646241", "#373917",
        "#6AD450", "#81817B", "#D499E3", "#979440", "#011A12", "#526554", "#B5885C", "#A499A5",
        "#03AD89", "#B3008B", "#E3C4B5", "#96531F", "#867175", "#74569E", "#617D9F", "#E70452",
        "#067EAF", "#A697B6", "#B787A8", "#9CFF93", "#311D19", "#3A9459", "#6E746E", "#B0C5AE",
        "#84EDF7", "#ED3488", "#754C78", "#384644", "#C7847B", "#00B6C5", "#7FA670", "#C1AF9E",
        "#2A7FFF", "#72A58C", "#FFC07F", "#9DEBDD", "#D97C8E", "#7E7C93", "#62E674", "#B5639E",
        "#FFA861", "#C2A580", "#8D9C83", "#B70546", "#372B2E", "#0098FF", "#985975", "#20204C",
        "#FF6C60", "#445083", "#8502AA", "#72361F", "#9676A3", "#484449", "#CED6C2", "#3B164A",
        "#CCA763", "#2C7F77", "#02227B", "#A37E6F", "#CDE6DC", "#CDFFFB", "#BE811A", "#F77183",
        "#EDE6E2", "#CDC6B4", "#FFE09E", "#3A7271", "#FF7B59", "#4E4E01", "#4AC684", "#8BC891",
        "#BC8A96", "#CF6353", "#DCDE5C", "#5EAADD", "#F6A0AD", "#E269AA", "#A3DAE4", "#436E83",
        "#002E17", "#ECFBFF", "#A1C2B6", "#50003F", "#71695B", "#67C4BB", "#536EFF", "#5D5A48",
        "#890039", "#969381", "#371521", "#5E4665", "#AA62C3", "#8D6F81", "#2C6135", "#410601",
        "#564620", "#E69034", "#6DA6BD", "#E58E56", "#E3A68B", "#48B176", "#D27D67", "#B5B268",
        "#7F8427", "#FF84E6", "#435740", "#EAE408", "#F4F5FF", "#325800", "#4B6BA5", "#ADCEFF",
        "#9B8ACC", "#885138", "#5875C1", "#7E7311", "#FEA5CA", "#9F8B5B", "#A55B54", "#89006A",
        "#AF756F", "#2A2000", "#576E4A", "#7F9EFF", "#7499A1", "#FFB550", "#00011E", "#D1511C",
        "#688151", "#BC908A", "#78C8EB", "#8502FF", "#483D30", "#C42221", "#5EA7FF", "#785715",
        "#0CEA91", "#FFFAED", "#B3AF9D", "#3E3D52", "#5A9BC2", "#9C2F90", "#8D5700", "#ADD79C",
        "#00768B", "#337D00", "#C59700", "#3156DC", "#944575", "#ECFFDC", "#D24CB2", "#97703C",
        "#4C257F", "#9E0366", "#88FFEC", "#B56481", "#396D2B", "#56735F", "#988376", "#9BB195",
        "#A9795C", "#E4C5D3", "#9F4F67", "#1E2B39", "#664327", "#AFCE78", "#322EDF", "#86B487",
        "#C23000", "#ABE86B", "#96656D", "#250E35", "#A60019", "#0080CF", "#CAEFFF", "#323F61",
        "#A449DC", "#6A9D3B", "#FF5AE4", "#636A01", "#D16CDA", "#736060", "#FFBAAD", "#D369B4",
        "#FFDED6", "#6C6D74", "#927D5E", "#845D70", "#5B62C1", "#2F4A36", "#E45F35", "#FF3B53",
        "#AC84DD", "#762988", "#70EC98", "#408543", "#2C3533", "#2E182D", "#323925", "#19181B",
        "#2F2E2C", "#023C32", "#9B9EE2", "#58AFAD", "#5C424D", "#7AC5A6", "#685D75", "#B9BCBD",
        "#834357", "#1A7B42", "#2E57AA", "#E55199", "#316E47", "#CD00C5", "#6A004D", "#7FBBEC",
        "#F35691", "#D7C54A", "#62ACB7", "#CBA1BC", "#A28A9A", "#6C3F3B", "#FFE47D", "#DCBAE3",
        "#5F816D", "#3A404A", "#7DBF32", "#E6ECDC", "#852C19", "#285366", "#B8CB9C", "#0E0D00",
        "#4B5D56", "#6B543F", "#E27172", "#0568EC", "#2EB500", "#D21656", "#EFAFFF", "#682021",
        "#2D2011", "#DA4CFF", "#70968E", "#FF7B7D", "#4A1930", "#E8C282", "#E7DBBC", "#A68486",
        "#1F263C", "#36574E", "#52CE79", "#ADAAA9", "#8A9F45", "#6542D2", "#00FB8C", "#5D697B",
        "#CCD27F", "#94A5A1", "#790229", "#E383E6", "#7EA4C1", "#4E4452", "#4B2C00", "#620B70",
        "#314C1E", "#874AA6", "#E30091", "#66460A", "#EB9A8B", "#EAC3A3", "#98EAB3", "#AB9180",
        "#B8552F", "#1A2B2F", "#94DDC5", "#9D8C76", "#9C8333", "#94A9C9", "#392935", "#8C675E",
        "#CCE93A", "#917100", "#01400B", "#449896", "#1CA370", "#E08DA7", "#8B4A4E", "#667776",
        "#4692AD", "#67BDA8", "#69255C", "#D3BFFF", "#4A5132", "#7E9285", "#77733C", "#E7A0CC",
        "#51A288", "#2C656A", "#4D5C5E", "#C9403A", "#DDD7F3", "#005844", "#B4A200", "#488F69",
        "#858182", "#D4E9B9", "#3D7397", "#CAE8CE", "#D60034", "#AA6746", "#9E5585", "#BA6200"
    };
67
Tatarize

視覚的に異なる色を手続き的に生成するためのページをオンラインで作成しました。
http://phrogz.net/css/distinct-colors.html

ここで他の回答とは異なり、RGBまたはHSV空間を均等にステップします( 軸の値と知覚の違いとの間に非線形関係がある )、私のページは標準 CMI(I:c ) 2つの色が視覚的に近すぎることを防ぐための色距離アルゴリズム。

ページの最後のタブでは、値をいくつかの方法で並べ替えてから、それらをインターリーブして(順序付けられたシャッフル)、非常に明確な色を並べて配置できます。

この記事の執筆時点では、ChromeおよびSafari、Firefox用のシムでのみ有効です。IE9のインターフェイスでHTML5範囲入力スライダーを使用しています。 Firefoxはまだネイティブサポートしていません。

21
Phrogz

[〜#〜] hsv [〜#〜] (またはHSL)スペースには、ここでより多くの機会があると思います。余分な変換を気にしない場合は、色相値を回転させるだけですべての色を簡単に確認できます。それだけでは不十分な場合は、彩度/値/明度の値を変更して、もう一度回転させます。または、Hue値をいつでもシフトしたり、「ステッピング」角度を変更したり、さらに回転したりできます。

8
aib

以前のRGBソリューションには欠陥があります。これらは、チャンネルにカラー値と0を使用するため、カラースペース全体を利用しません。

#006600
#330000
#FF00FF

代わりに、可能なすべての色の値を使用して、色チャネル全体で最大3つの異なる値を持つことができる混合色を生成する必要があります。

#336600
#FF0066
#33FF66

フルカラースペースを使用すると、より明確な色を生成できます。たとえば、チャネルごとに4つの値がある場合、4 * 4 * 4 =64色を生成できます。他のスキームでは、4 * 7 + 1 =29色のみを生成できます。

N色が必要な場合、必要なチャネルごとの値の数は次のとおりです:ceil(cube_root(N))

それにより、可能な値(0〜255の範囲)を決定できます(python):

max = 255
segs = int(num**(Decimal("1.0")/3))
step = int(max/segs)
p = [(i*step) for i in xrange(segs)]
values = [max]
values.extend(p)

次に、RGBカラーを反復処理できます(これはお勧めしません)。

total = 0
for red in values:
  for green in values:
    for blue in values:
      if total <= N:
        print color(red, green, blue)
      total += 1

ネストされたループは機能しますが、青チャンネルを優先し、結果の色に十分な赤が含まれないため、お勧めしません(Nはすべての可能な色値の数よりも少ない可能性が高い)。

各チャネルが平等に扱われ、小さなチャネルよりも明確なカラー値が優先されるループに対して、より良いアルゴリズムを作成できます。

私は解決策を持っていますが、理解するのが最も簡単でも効率的でもないので、投稿したくありませんでした。ただし、本当に必要な場合は solution を表示できます。

64個の生成色のサンプルを次に示します。 64色

4
deancutlet

同じ機能がシンプルな形で必要でした。

私が必要としていたのは、インデックス値の増加から可能な限りユニークな色を生成することでした。

C#のコードは次のとおりです(他の言語の実装はどれも非常に似ているはずです)

メカニズムは非常に単純です

  1. Color_writersのパターンは、0〜7のindexA値から生成されます。

  2. インデックスが8未満の場合、それらの色は= color_writer [indexA] * 255です。

  3. 8〜15のインデックスの場合、これらの色は= color_writer [indexA] * 255 +(color_writer [indexA + 1])* 127

  4. 16〜23のインデックスの場合、それらの色は= color_writer [indexA] * 255 +(color_writer [indexA + 1])* 127 +(color_writer [indexA + 2])* 63

等々:

Rand Color Generator

    private System.Drawing.Color GetRandColor(int index)
    {
        byte red = 0;
        byte green = 0;
        byte blue = 0;

        for (int t = 0; t <= index / 8; t++)
        {
            int index_a = (index+t) % 8;
            int index_b = index_a / 2;

            //Color writers, take on values of 0 and 1
            int color_red = index_a % 2;
            int color_blue = index_b % 2;
            int color_green = ((index_b + 1) % 3) % 2;

            int add = 255 / (t + 1);

            red = (byte)(red+color_red * add);
            green = (byte)(green + color_green * add);
            blue = (byte)(blue + color_blue * add);
        }

        Color color = Color.FromArgb(red, green, blue);
        return color;
    }

注:明るく見づらい色(この例では、白い背景に黄色)を生成しないようにするには、再帰ループで色を変更できます。

    int skip_index = 0;
    private System.Drawing.Color GetRandColor(int index)
    {
        index += skip_index;
        byte red = 0;
        byte green = 0;
        byte blue = 0;

        for (int t = 0; t <= index / 8; t++)
        {
            int index_a = (index+t) % 8;
            int index_b = index_a / 2;

            //Color writers, take on values of 0 and 1
            int color_red = index_a % 2;
            int color_blue = index_b % 2;
            int color_green = ((index_b + 1) % 3) % 2;

            int add = 255 / (t + 1);

            red = (byte)(red + color_red * add);
            green = (byte)(green + color_green * add);
            blue = (byte)(blue + color_blue * add);
        }

        if(red > 200 && green > 200)
        {
            skip_index++;
            return GetRandColor(index);
        }

        Color color = Color.FromArgb(red, green, blue);
        return color;
    }
2
Mich

このアルゴリズムをより短い方法で実装しました

void ColorValue::SetColorValue( double r, double g, double b, ColorType myType )
{
   this->c[0] = r;
   this->c[1] = g;
   this->c[2] = b;

   this->type = myType;
}


DistinctColorGenerator::DistinctColorGenerator()
{
   mFactor = 255;
   mColorsGenerated = 0;
   mpColorCycle = new ColorValue[6];
   mpColorCycle[0].SetColorValue( 1.0, 0.0, 0.0, TYPE_RGB);
   mpColorCycle[1].SetColorValue( 0.0, 1.0, 0.0, TYPE_RGB);
   mpColorCycle[2].SetColorValue( 0.0, 0.0, 1.0, TYPE_RGB);
   mpColorCycle[3].SetColorValue( 1.0, 1.0, 0.0, TYPE_RGB);
   mpColorCycle[4].SetColorValue( 1.0, 0.0, 1.0, TYPE_RGB);
   mpColorCycle[5].SetColorValue( 0.0, 1.0, 1.0, TYPE_RGB);
}

//----------------------------------------------------------

ColorValue DistinctColorGenerator::GenerateNewColor()
{
   int innerCycleNr = mColorsGenerated % 6;
   int outerCycleNr = mColorsGenerated / 6;
   int cycleSize = pow( 2, (int)(log((double)(outerCycleNr)) / log( 2.0 ) ) );
   int insideCycleCounter = outerCycleNr % cyclesize;

   if ( outerCycleNr == 0)
   {
      mFactor = 255;
   }
   else
   {
      mFactor = ( 256 / ( 2 * cycleSize ) ) + ( insideCycleCounter * ( 256 / cycleSize ) );
   }

   ColorValue newColor = mpColorCycle[innerCycleNr] * mFactor;

   mColorsGenerated++;
   return newColor;
}
1
Filip Rooms

輝度を100%に設定してから、最初に原色を使用します。

FF0000、00FF00、0000FF

その後の組み合わせ

FFFF00、FF00FF、00FFFF

次に、たとえば、明るさを半分にして、同じラウンドを行います。本当に明確に区別できる色はあまり多くありません。これらの線の後、線幅を変更し、点線/破線を作成します。

1
mmiika

また、色空間は、0から255までの3つの数値のすべての組み合わせと考えることもできます。これは、0〜255 ^ 3の数値のbase-255表現であり、小数点以下3桁を強制的に使用します(必要に応じて、末尾にゼロを追加します)。

したがって、x個の色を生成するには、0から100までのx個の等間隔のパーセンテージを計算します。これらのパーセンテージに255 ^ 3を掛けて数値を取得し、それらの数値を255を基数に変換し、前述のようにゼロを追加します。

参照用のベース変換アルゴリズム(C#に非常に近い擬似コード):

int num = (number to convert);
int baseConvert = (desired base, 255 in this case);
(array of ints) nums = new (array of ints);
int x = num;
double digits = Math.Log(num, baseConvert); //or ln(num) / ln(baseConvert)
int numDigits = (digits - Math.Ceiling(digits) == 0 ? (int)(digits + 1) : (int)Math.Ceiling(digits)); //go up one if it turns out even
for (int i = 0; i < numDigits; i++)
{
  int toAdd = ((int)Math.Floor(x / Math.Pow((double)convertBase, (double)(numDigits - i - 1))));
  //Formula for 0th digit: d = num / (convertBase^(numDigits - 1))
  //Then subtract (d * convertBase^(numDigits - 1)) from the num and continue
  nums.Add(toAdd);
  x -= toAdd * (int)Math.Pow((double)convertBase, (double)(numDigits - i - 1));
}
return nums;

必要に応じて、白と黒を避けるために、少し範囲を広げるために何かをする必要があるかもしれません。これらの数値は実際には滑らかなカラースケールではありませんが、あまり多くない場合は個別の色を生成します。

この質問 は、.NETでの基本変換について詳しく説明しています。

0
Tom Hamming

誰かがC#で白い前景のランダムな中から高の暗い色を生成する必要がある場合のコードは次のとおりです。

[DllImport("shlwapi.dll")]
public static extern int ColorHLSToRGB(int H, int L, int S);

public static string GetRandomDarkColor()
{
    int h = 0, s = 0, l = 0;
    h = (RandomObject.Next(1, 2) % 2 == 0) ? RandomObject.Next(0, 180) : iApp.RandomObject.Next(181, 360);
    s = RandomObject.Next(90, 160);
    l = RandomObject.Next(80, 130);

    return System.Drawing.ColorTranslator.FromWin32(ColorHLSToRGB(h, l, s)).ToHex();
}

private static string ToHex(this System.Drawing.Color c)
{
    return "#" + c.R.ToString("X2") + c.G.ToString("X2") + c.B.ToString("X2");
}

RandomObjectを独自のRandomクラスオブジェクトに置き換えることができます。

0
Krishna

n番目の色を取得します。この種のコードで十分です。これは、opencvクラスタリングの問題で使用できます。これにより、列の変更に応じて異なる色が作成されます。

for(int col=1;col<CLUSTER_COUNT+1;col++){
switch(col%6)
   {
   case 1:cout<<Scalar(0,0,(int)(255/(int)(col/6+1)))<<endl;break;
   case 2:cout<<Scalar(0,(int)(255/(int)(col/6+1)),0)<<endl;break;
    case 3:cout<<Scalar((int)(255/(int)(col/6+1)),0,0)<<endl;break;
    case 4:cout<<Scalar(0,(int)(255/(int)(col/6+1)),(int)(255/(int)(col/6+1)))<<endl;break;
    case 5:cout<<Scalar((int)(255/(int)(col/6+1)),0,(int)(255/(int)(col/6+1)))<<endl;break;
    case 0:cout<<Scalar((int)(255/(int)(col/6)),(int)(255/(int)(col/6)),0)<<endl;break;
   }
}
0
sai siva sundar