私は2つの文字列を持っています
string a = "foo bar";
string b = "bar foo";
a
からb
への変更を検出したい。 a
からb
に変更するには、どの文字を変更する必要がありますか?
各キャラクターに繰り返しが必要で、追加、削除、または同等のままかどうかを検出する必要があると思います。これが私の予想結果です
'f' Remove
'o' Remove
'o' Remove
' ' Remove
'b' Equal
'a' Equal
'r' Equal
' ' Add
'f' Add
'o' Add
'o' Add
結果のクラスと列挙:
public enum Operation { Add,Equal,Remove };
public class Difference
{
public Operation op { get; set; }
public char c { get; set; }
}
ここに私の解決策がありますが、「削除」の場合は、コードがどのように見えるかが明確ではありません
public static List<Difference> CalculateDifferences(string left, string right)
{
int count = 0;
List<Difference> result = new List<Difference>();
foreach (char ch in left)
{
int index = right.IndexOf(ch, count);
if (index == count)
{
count++;
result.Add(new Difference() { c = ch, op = Operation.Equal });
}
else if (index > count)
{
string add = right.Substring(count, index - count);
result.AddRange(add.Select(x => new Difference() { c = x, op = Operation.Add }));
count += add.Length;
}
else
{
//Remove?
}
}
return result;
}
削除された文字のコードはどのように見える必要がありますか?
更新-さらにいくつかの例を追加
例1:
string a = "foobar";
string b = "fooar";
期待される結果:
'f' Equal
'o' Equal
'o' Equal
'b' Remove
'a' Equal
'r' Equal
例2:
string a = "asdfghjk";
string b = "wsedrftr";
期待される結果:
'a' Remove
'w' Add
's' Equal
'e' Add
'd' Equal
'r' Add
'f' Equal
'g' Remove
'h' Remove
'j' Remove
'k' Remove
't' Add
'r' Add
更新:
Dmitryとingenの答えのの比較は次のとおりです。 https://dotnetfiddle.net/MJQDAO
探しているのは(最小)編集距離/(最小)編集シーケンス。プロセスのtheoryを見つけることができます:
https://web.stanford.edu/class/cs124/lec/med.pdf
(最も簡単な)レーベンシュタイン距離/シーケンスアルゴリズムを実装しましょう(詳細については https://en.wikipedia.org/wiki/Levenshtein_distance を参照してください)。 helperクラスから始めましょう(実装を少し変更しました):
public enum EditOperationKind : byte {
None, // Nothing to do
Add, // Add new character
Edit, // Edit character into character (including char into itself)
Remove, // Delete existing character
};
public struct EditOperation {
public EditOperation(char valueFrom, char valueTo, EditOperationKind operation) {
ValueFrom = valueFrom;
ValueTo = valueTo;
Operation = valueFrom == valueTo ? EditOperationKind.None : operation;
}
public char ValueFrom { get; }
public char ValueTo {get ;}
public EditOperationKind Operation { get; }
public override string ToString() {
switch (Operation) {
case EditOperationKind.None:
return $"'{ValueTo}' Equal";
case EditOperationKind.Add:
return $"'{ValueTo}' Add";
case EditOperationKind.Remove:
return $"'{ValueFrom}' Remove";
case EditOperationKind.Edit:
return $"'{ValueFrom}' to '{ValueTo}' Edit";
default:
return "???";
}
}
}
提供された例からわかるように、edit操作はありませんが、add + remove ;だからこそeditCost = 2
いつ insertCost = 1
、int removeCost = 1
(tieの場合:insert + remove
vs. edit
私たちはinsert + remove
)。これで、Levensteinアルゴリズムを実装する準備ができました。
public static EditOperation[] EditSequence(
string source, string target,
int insertCost = 1, int removeCost = 1, int editCost = 2) {
if (null == source)
throw new ArgumentNullException("source");
else if (null == target)
throw new ArgumentNullException("target");
// Forward: building score matrix
// Best operation (among insert, update, delete) to perform
EditOperationKind[][] M = Enumerable
.Range(0, source.Length + 1)
.Select(line => new EditOperationKind[target.Length + 1])
.ToArray();
// Minimum cost so far
int[][] D = Enumerable
.Range(0, source.Length + 1)
.Select(line => new int[target.Length + 1])
.ToArray();
// Edge: all removes
for (int i = 1; i <= source.Length; ++i) {
M[i][0] = EditOperationKind.Remove;
D[i][0] = removeCost * i;
}
// Edge: all inserts
for (int i = 1; i <= target.Length; ++i) {
M[0][i] = EditOperationKind.Add;
D[0][i] = insertCost * i;
}
// Having fit N - 1, K - 1 characters let's fit N, K
for (int i = 1; i <= source.Length; ++i)
for (int j = 1; j <= target.Length; ++j) {
// here we choose the operation with the least cost
int insert = D[i][j - 1] + insertCost;
int delete = D[i - 1][j] + removeCost;
int edit = D[i - 1][j - 1] + (source[i - 1] == target[j - 1] ? 0 : editCost);
int min = Math.Min(Math.Min(insert, delete), edit);
if (min == insert)
M[i][j] = EditOperationKind.Add;
else if (min == delete)
M[i][j] = EditOperationKind.Remove;
else if (min == edit)
M[i][j] = EditOperationKind.Edit;
D[i][j] = min;
}
// Backward: knowing scores (D) and actions (M) let's building edit sequence
List<EditOperation> result =
new List<EditOperation>(source.Length + target.Length);
for (int x = target.Length, y = source.Length; (x > 0) || (y > 0);) {
EditOperationKind op = M[y][x];
if (op == EditOperationKind.Add) {
x -= 1;
result.Add(new EditOperation('\0', target[x], op));
}
else if (op == EditOperationKind.Remove) {
y -= 1;
result.Add(new EditOperation(source[y], '\0', op));
}
else if (op == EditOperationKind.Edit) {
x -= 1;
y -= 1;
result.Add(new EditOperation(source[y], target[x], op));
}
else // Start of the matching (EditOperationKind.None)
break;
}
result.Reverse();
return result.ToArray();
}
デモ:
var sequence = EditSequence("asdfghjk", "wsedrftr");
Console.Write(string.Join(Environment.NewLine, sequence));
結果:
'a' Remove
'w' Add
's' Equal
'e' Add
'd' Equal
'r' Add
'f' Equal
'g' Remove
'h' Remove
'j' Remove
'k' Remove
't' Add
'r' Add
ここでは手足に出て、最も効率的ではないが、推論するのが簡単なアルゴリズムを提供します。
最初にいくつかの地面をカバーしましょう:
1)注文事項
string before = "bar foo"
string after = "foo bar"
「bar」と「foo」は両方の文字列に含まれていますが、「bar」は後で削除して再度追加する必要があります。これは、after
文字列であるため、関心のある文字の順序を示します。最初に "foo"が必要です。
2)注文超過
別の見方をすると、ある種のキャラクターは順番を変えられないかもしれません。
string before = "abracadabra"
string after = "bar bar"
「bar b a r」の太字のみ、「a b r a cadab」で発言するra "。両方の文字列に2つのbがありますが、最初の1つだけcountsです。 「barbar」の2番目のbに到達するまでに、「abracadabra "は、 'r'の最初の出現を探しているときに既に渡されています。
3)障壁
バリアは、順序と数を考慮して、両方の文字列に存在する文字です。これは、カウントを失うため、setが最も適切なデータ構造ではない可能性があることをすでに示唆しています。
入力用
string before = "pinata"
string after = "accidental"
取得します(擬似コード)
var barriers = { 'a', 't', 'a' }
「ピンata
「a cciden ta l」
実行フローを見てみましょう。
after
の最初の文字でもあるため、before
の最初の 'a'の前にあるものはすべて削除できます。 "ピンa ta"-> "a ta"after
文字列の次の位置にないため、間にすべてを挿入できます。 「a t a」->「acciden t a」after
の長さよりも小さいため、後処理が行われます。 「accidenta」->「accidental」注「i」と「n」は再生できません、もう一度、カウントオーバー注文してください。
順序と数の問題を確立し、Queue
が思い浮かびます。
static public List<Difference> CalculateDifferences(string before, string after)
{
List<Difference> result = new List<Difference>();
Queue<char> barriers = new Queue<char>();
#region Preprocessing
int index = 0;
for (int i = 0; i < after.Length; i++)
{
// Look for the first match starting at index
int match = before.IndexOf(after[i], index);
if (match != -1)
{
barriers.Enqueue(after[i]);
index = match + 1;
}
}
#endregion
#region Queue Processing
index = 0;
while (barriers.Any())
{
char barrier = barriers.Dequeue();
// Get the offset to the barrier in both strings,
// ignoring the part that's already been handled
int offsetBefore = before.IndexOf(barrier, index) - index;
int offsetAfter = after.IndexOf(barrier, index) - index;
// Remove prefix from 'before' string
if (offsetBefore > 0)
{
RemoveChars(before.Substring(index, offsetBefore), result);
before = before.Substring(offsetBefore);
}
// Insert prefix from 'after' string
if (offsetAfter > 0)
{
string substring = after.Substring(index, offsetAfter);
AddChars(substring, result);
before = before.Insert(index, substring);
index += substring.Length;
}
// Jump over the barrier
KeepChar(barrier, result);
index++;
}
#endregion
#region Post Queue processing
if (index < before.Length)
{
RemoveChars(before.Substring(index), result);
}
if (index < after.Length)
{
AddChars(after.Substring(index), result);
}
#endregion
return result;
}
static private void KeepChar(char barrier, List<Difference> result)
{
result.Add(new Difference()
{
c = barrier,
op = Operation.Equal
});
}
static private void AddChars(string substring, List<Difference> result)
{
result.AddRange(substring.Select(x => new Difference()
{
c = x,
op = Operation.Add
}));
}
static private void RemoveChars(string substring, List<Difference> result)
{
result.AddRange(substring.Select(x => new Difference()
{
c = x,
op = Operation.Remove
}));
}
上記の3つの例でテストしたところ、期待どおりの結果が適切かつ完全に返されます。
int flag = 0;
int flag_2 = 0;
string a = "asdfghjk";
string b = "wsedrftr";
char[] array_a = a.ToCharArray();
char[] array_b = b.ToCharArray();
for (int i = 0,j = 0, n= 0; i < array_b.Count(); i++)
{
//Execute 1 time until reach first equal character
if(i == 0 && a.Contains(array_b[0]))
{
while (array_a[n] != array_b[0])
{
Console.WriteLine(String.Concat(array_a[n], " : Remove"));
n++;
}
Console.WriteLine(String.Concat(array_a[n], " : Equal"));
n++;
}
else if(i == 0 && !a.Contains(array_b[0]))
{
Console.WriteLine(String.Concat(array_a[n], " : Remove"));
n++;
Console.WriteLine(String.Concat(array_b[0], " : Add"));
}
else
{
if(n < array_a.Count())
{
if (array_a[n] == array_b[i])
{
Console.WriteLine(String.Concat(array_a[n], " : Equal"));
n++;
}
else
{
flag = 0;
for (int z = n; z < array_a.Count(); z++)
{
if (array_a[z] == array_b[i])
{
flag = 1;
break;
}
}
if (flag == 0)
{
flag_2 = 0;
for (int aa = i; aa < array_b.Count(); aa++)
{
for(int bb = n; bb < array_a.Count(); bb++)
{
if (array_b[aa] == array_a[bb])
{
flag_2 = 1;
break;
}
}
}
if(flag_2 == 1)
{
Console.WriteLine(String.Concat(array_b[i], " : Add"));
}
else
{
for (int z = n; z < array_a.Count(); z++)
{
Console.WriteLine(String.Concat(array_a[z], " : Remove"));
n++;
}
Console.WriteLine(String.Concat(array_b[i], " : Add"));
}
}
else
{
Console.WriteLine(String.Concat(array_a[n], " : Remove"));
i--;
n++;
}
}
}
else
{
Console.WriteLine(String.Concat(array_b[i], " : Add"));
}
}
}//end for
MessageBox.Show("Done");
//OUTPUT CONSOLE:
/*
a : Remove
w : Add
s : Equal
e : Add
d : Equal
r : Add
f : Equal
g : Remove
h : Remove
j : Remove
k : Remove
t : Add
r : Add
*/
完全なコードとコメント付きの別のソリューションがあります。ただし、最初の元の例の結果は逆になります。
class Program
{
enum CharState
{
Add,
Equal,
Remove
}
struct CharResult
{
public char c;
public CharState state;
}
static void Main(string[] args)
{
string a = "asdfghjk";
string b = "wsedrftr";
while (true)
{
Console.WriteLine("Enter string a (enter to quit) :");
a = Console.ReadLine();
if (a == string.Empty)
break;
Console.WriteLine("Enter string b :");
b = Console.ReadLine();
List<CharResult> result = calculate(a, b);
DisplayResults(result);
}
Console.WriteLine("Press a key to exit");
Console.ReadLine();
}
static List<CharResult> calculate(string a, string b)
{
List<CharResult> res = new List<CharResult>();
int i = 0, j = 0;
char[] array_a = a.ToCharArray();
char[] array_b = b.ToCharArray();
while (i < array_a.Length && j < array_b.Length)
{
//For the current char in a, we check for the equal in b
int index = b.IndexOf(array_a[i], j);
if (index < 0) //not found, this char should be removed
{
res.Add(new CharResult() { c = array_a[i], state = CharState.Remove });
i++;
}
else
{
//we add all the chars between B's current index and the index
while (j < index)
{
res.Add(new CharResult() { c = array_b[j], state = CharState.Add });
j++;
}
//then we say the current is the same
res.Add(new CharResult() { c = array_a[i], state = CharState.Equal });
i++;
j++;
}
}
while (i < array_a.Length)
{
//b is now empty, we remove the remains
res.Add(new CharResult() { c = array_a[i], state = CharState.Remove });
i++;
}
while (j < array_b.Length)
{
//a has been treated, we add the remains
res.Add(new CharResult() { c = array_b[j], state = CharState.Add });
j++;
}
return res;
}
static void DisplayResults(List<CharResult> results)
{
foreach (CharResult r in results)
{
Console.WriteLine($"'{r.c}' - {r.state}");
}
}
}
2つの文字列を正確に比較したい場合は、Levenshtein Distance
を読んで理解する必要があります。このアルゴリズムを使用すると、2つの文字列間の類似率を正確に計算できます。また、アルゴリズムをバックトラックして、2番目の文字列の変化の連鎖を取得できます。このアルゴリズムは、自然言語処理にとっても重要なメトリックです。
他にもいくつかの利点があり、学習する時間が必要です。
このリンクには、レーベンシュタイン距離のC#バージョンがあります。