C#で文字列を暗号化および復号化する方法
編集2013年10月 :私は欠点を解決するためにこの回答を編集してきましたが、 jbtuleの回答 を参照してください。
https://stackoverflow.com/a/10366194/188474
元の答え:
これは "RijndaelManaged Class"ドキュメント と MCTSトレーニングキット から派生した実用的な例です。
編集2012 - 4月 :この答えは、jbtuleごとの提案のIVを前に置くために、ここに示されているように編集されました:
http://msdn.Microsoft.com/ja-jp/library/system.security.cryptography.aesmanaged%28v=vs.95%29.aspx
がんばろう!
public class Crypto
{
//While an app specific salt is not the best practice for
//password based encryption, it's probably safe enough as long as
//it is truly uncommon. Also too much work to alter this answer otherwise.
private static byte[] _salt = __To_Do__("Add a app specific salt here");
/// <summary>
/// Encrypt the given string using AES. The string can be decrypted using
/// DecryptStringAES(). The sharedSecret parameters must match.
/// </summary>
/// <param name="plainText">The text to encrypt.</param>
/// <param name="sharedSecret">A password used to generate a key for encryption.</param>
public static string EncryptStringAES(string plainText, string sharedSecret)
{
if (string.IsNullOrEmpty(plainText))
throw new ArgumentNullException("plainText");
if (string.IsNullOrEmpty(sharedSecret))
throw new ArgumentNullException("sharedSecret");
string outStr = null; // Encrypted string to return
RijndaelManaged aesAlg = null; // RijndaelManaged object used to encrypt the data.
try
{
// generate the key from the shared secret and the salt
Rfc2898DeriveBytes key = new Rfc2898DeriveBytes(sharedSecret, _salt);
// Create a RijndaelManaged object
aesAlg = new RijndaelManaged();
aesAlg.Key = key.GetBytes(aesAlg.KeySize / 8);
// Create a decryptor to perform the stream transform.
ICryptoTransform encryptor = aesAlg.CreateEncryptor(aesAlg.Key, aesAlg.IV);
// Create the streams used for encryption.
using (MemoryStream msEncrypt = new MemoryStream())
{
// prepend the IV
msEncrypt.Write(BitConverter.GetBytes(aesAlg.IV.Length), 0, sizeof(int));
msEncrypt.Write(aesAlg.IV, 0, aesAlg.IV.Length);
using (CryptoStream csEncrypt = new CryptoStream(msEncrypt, encryptor, CryptoStreamMode.Write))
{
using (StreamWriter swEncrypt = new StreamWriter(csEncrypt))
{
//Write all data to the stream.
swEncrypt.Write(plainText);
}
}
outStr = Convert.ToBase64String(msEncrypt.ToArray());
}
}
finally
{
// Clear the RijndaelManaged object.
if (aesAlg != null)
aesAlg.Clear();
}
// Return the encrypted bytes from the memory stream.
return outStr;
}
/// <summary>
/// Decrypt the given string. Assumes the string was encrypted using
/// EncryptStringAES(), using an identical sharedSecret.
/// </summary>
/// <param name="cipherText">The text to decrypt.</param>
/// <param name="sharedSecret">A password used to generate a key for decryption.</param>
public static string DecryptStringAES(string cipherText, string sharedSecret)
{
if (string.IsNullOrEmpty(cipherText))
throw new ArgumentNullException("cipherText");
if (string.IsNullOrEmpty(sharedSecret))
throw new ArgumentNullException("sharedSecret");
// Declare the RijndaelManaged object
// used to decrypt the data.
RijndaelManaged aesAlg = null;
// Declare the string used to hold
// the decrypted text.
string plaintext = null;
try
{
// generate the key from the shared secret and the salt
Rfc2898DeriveBytes key = new Rfc2898DeriveBytes(sharedSecret, _salt);
// Create the streams used for decryption.
byte[] bytes = Convert.FromBase64String(cipherText);
using (MemoryStream msDecrypt = new MemoryStream(bytes))
{
// Create a RijndaelManaged object
// with the specified key and IV.
aesAlg = new RijndaelManaged();
aesAlg.Key = key.GetBytes(aesAlg.KeySize / 8);
// Get the initialization vector from the encrypted stream
aesAlg.IV = ReadByteArray(msDecrypt);
// Create a decrytor to perform the stream transform.
ICryptoTransform decryptor = aesAlg.CreateDecryptor(aesAlg.Key, aesAlg.IV);
using (CryptoStream csDecrypt = new CryptoStream(msDecrypt, decryptor, CryptoStreamMode.Read))
{
using (StreamReader srDecrypt = new StreamReader(csDecrypt))
// Read the decrypted bytes from the decrypting stream
// and place them in a string.
plaintext = srDecrypt.ReadToEnd();
}
}
}
finally
{
// Clear the RijndaelManaged object.
if (aesAlg != null)
aesAlg.Clear();
}
return plaintext;
}
private static byte[] ReadByteArray(Stream s)
{
byte[] rawLength = new byte[sizeof(int)];
if (s.Read(rawLength, 0, rawLength.Length) != rawLength.Length)
{
throw new SystemException("Stream did not contain properly formatted byte array");
}
byte[] buffer = new byte[BitConverter.ToInt32(rawLength, 0)];
if (s.Read(buffer, 0, buffer.Length) != buffer.Length)
{
throw new SystemException("Did not read byte array properly");
}
return buffer;
}
}
文字列の対称認証暗号化の最新の例。
対称暗号化の一般的なベストプラクティスは、関連データによる認証暗号化(AEAD)を使用することですが、これは標準の.net暗号ライブラリの一部ではありません。それで最初の例は AES256 そしてそれから HMAC256 、2ステップ 暗号化そしてMAC を使います。そしてそれはより多くのオーバーヘッドとより多くの鍵を必要とします。
2番目の例では、オープンソースのBouncy Castleを使用して(nuget経由で)AES256 - _ gcm _ のより簡単な方法を使用しています。
どちらの例も、秘密メッセージ文字列、キー、およびオプションの非機密ペイロードを受け取り、オプションで非機密データを先頭に付加して返され、認証された暗号化文字列を受け取る主な機能を備えています。理想的には、ランダムに生成された256ビットの鍵でこれらを使用するでしょうNewKey()
を参照してください。
どちらの例にも、文字列パスワードを使用してキーを生成するためのヘルパーメソッドがあります。これらのヘルパーメソッドは他の例と一致させるために便宜上提供されていますが、パスワードの強度は256ビットキーよりはるかに弱いになるのではるかに安全性が低いです。 。
更新: byte[]
オーバーロードを追加し、StackOverflowの回答制限のため、 Gist だけに4つのスペースインデントとAPIドキュメントを含む完全な書式設定が追加されました。
.NET組み込み暗号化(AES)-Then-MAC(HMAC) [要旨]
/*
* This work (Modern Encryption of a String C#, by James Tuley),
* identified by James Tuley, is free of known copyright restrictions.
* https://Gist.github.com/4336842
* http://creativecommons.org/publicdomain/mark/1.0/
*/
using System;
using System.IO;
using System.Security.Cryptography;
using System.Text;
namespace Encryption
{
public static class AESThenHMAC
{
private static readonly RandomNumberGenerator Random = RandomNumberGenerator.Create();
//Preconfigured Encryption Parameters
public static readonly int BlockBitSize = 128;
public static readonly int KeyBitSize = 256;
//Preconfigured Password Key Derivation Parameters
public static readonly int SaltBitSize = 64;
public static readonly int Iterations = 10000;
public static readonly int MinPasswordLength = 12;
/// <summary>
/// Helper that generates a random key on each call.
/// </summary>
/// <returns></returns>
public static byte[] NewKey()
{
var key = new byte[KeyBitSize / 8];
Random.GetBytes(key);
return key;
}
/// <summary>
/// Simple Encryption (AES) then Authentication (HMAC) for a UTF8 Message.
/// </summary>
/// <param name="secretMessage">The secret message.</param>
/// <param name="cryptKey">The crypt key.</param>
/// <param name="authKey">The auth key.</param>
/// <param name="nonSecretPayload">(Optional) Non-Secret Payload.</param>
/// <returns>
/// Encrypted Message
/// </returns>
/// <exception cref="System.ArgumentException">Secret Message Required!;secretMessage</exception>
/// <remarks>
/// Adds overhead of (Optional-Payload + BlockSize(16) + Message-Padded-To-Blocksize + HMac-Tag(32)) * 1.33 Base64
/// </remarks>
public static string SimpleEncrypt(string secretMessage, byte[] cryptKey, byte[] authKey,
byte[] nonSecretPayload = null)
{
if (string.IsNullOrEmpty(secretMessage))
throw new ArgumentException("Secret Message Required!", "secretMessage");
var plainText = Encoding.UTF8.GetBytes(secretMessage);
var cipherText = SimpleEncrypt(plainText, cryptKey, authKey, nonSecretPayload);
return Convert.ToBase64String(cipherText);
}
/// <summary>
/// Simple Authentication (HMAC) then Decryption (AES) for a secrets UTF8 Message.
/// </summary>
/// <param name="encryptedMessage">The encrypted message.</param>
/// <param name="cryptKey">The crypt key.</param>
/// <param name="authKey">The auth key.</param>
/// <param name="nonSecretPayloadLength">Length of the non secret payload.</param>
/// <returns>
/// Decrypted Message
/// </returns>
/// <exception cref="System.ArgumentException">Encrypted Message Required!;encryptedMessage</exception>
public static string SimpleDecrypt(string encryptedMessage, byte[] cryptKey, byte[] authKey,
int nonSecretPayloadLength = 0)
{
if (string.IsNullOrWhiteSpace(encryptedMessage))
throw new ArgumentException("Encrypted Message Required!", "encryptedMessage");
var cipherText = Convert.FromBase64String(encryptedMessage);
var plainText = SimpleDecrypt(cipherText, cryptKey, authKey, nonSecretPayloadLength);
return plainText == null ? null : Encoding.UTF8.GetString(plainText);
}
/// <summary>
/// Simple Encryption (AES) then Authentication (HMAC) of a UTF8 message
/// using Keys derived from a Password (PBKDF2).
/// </summary>
/// <param name="secretMessage">The secret message.</param>
/// <param name="password">The password.</param>
/// <param name="nonSecretPayload">The non secret payload.</param>
/// <returns>
/// Encrypted Message
/// </returns>
/// <exception cref="System.ArgumentException">password</exception>
/// <remarks>
/// Significantly less secure than using random binary keys.
/// Adds additional non secret payload for key generation parameters.
/// </remarks>
public static string SimpleEncryptWithPassword(string secretMessage, string password,
byte[] nonSecretPayload = null)
{
if (string.IsNullOrEmpty(secretMessage))
throw new ArgumentException("Secret Message Required!", "secretMessage");
var plainText = Encoding.UTF8.GetBytes(secretMessage);
var cipherText = SimpleEncryptWithPassword(plainText, password, nonSecretPayload);
return Convert.ToBase64String(cipherText);
}
/// <summary>
/// Simple Authentication (HMAC) and then Descryption (AES) of a UTF8 Message
/// using keys derived from a password (PBKDF2).
/// </summary>
/// <param name="encryptedMessage">The encrypted message.</param>
/// <param name="password">The password.</param>
/// <param name="nonSecretPayloadLength">Length of the non secret payload.</param>
/// <returns>
/// Decrypted Message
/// </returns>
/// <exception cref="System.ArgumentException">Encrypted Message Required!;encryptedMessage</exception>
/// <remarks>
/// Significantly less secure than using random binary keys.
/// </remarks>
public static string SimpleDecryptWithPassword(string encryptedMessage, string password,
int nonSecretPayloadLength = 0)
{
if (string.IsNullOrWhiteSpace(encryptedMessage))
throw new ArgumentException("Encrypted Message Required!", "encryptedMessage");
var cipherText = Convert.FromBase64String(encryptedMessage);
var plainText = SimpleDecryptWithPassword(cipherText, password, nonSecretPayloadLength);
return plainText == null ? null : Encoding.UTF8.GetString(plainText);
}
public static byte[] SimpleEncrypt(byte[] secretMessage, byte[] cryptKey, byte[] authKey, byte[] nonSecretPayload = null)
{
//User Error Checks
if (cryptKey == null || cryptKey.Length != KeyBitSize / 8)
throw new ArgumentException(String.Format("Key needs to be {0} bit!", KeyBitSize), "cryptKey");
if (authKey == null || authKey.Length != KeyBitSize / 8)
throw new ArgumentException(String.Format("Key needs to be {0} bit!", KeyBitSize), "authKey");
if (secretMessage == null || secretMessage.Length < 1)
throw new ArgumentException("Secret Message Required!", "secretMessage");
//non-secret payload optional
nonSecretPayload = nonSecretPayload ?? new byte[] { };
byte[] cipherText;
byte[] iv;
using (var aes = new AesManaged
{
KeySize = KeyBitSize,
BlockSize = BlockBitSize,
Mode = CipherMode.CBC,
Padding = PaddingMode.PKCS7
})
{
//Use random IV
aes.GenerateIV();
iv = aes.IV;
using (var encrypter = aes.CreateEncryptor(cryptKey, iv))
using (var cipherStream = new MemoryStream())
{
using (var cryptoStream = new CryptoStream(cipherStream, encrypter, CryptoStreamMode.Write))
using (var binaryWriter = new BinaryWriter(cryptoStream))
{
//Encrypt Data
binaryWriter.Write(secretMessage);
}
cipherText = cipherStream.ToArray();
}
}
//Assemble encrypted message and add authentication
using (var hmac = new HMACSHA256(authKey))
using (var encryptedStream = new MemoryStream())
{
using (var binaryWriter = new BinaryWriter(encryptedStream))
{
//Prepend non-secret payload if any
binaryWriter.Write(nonSecretPayload);
//Prepend IV
binaryWriter.Write(iv);
//Write Ciphertext
binaryWriter.Write(cipherText);
binaryWriter.Flush();
//Authenticate all data
var tag = hmac.ComputeHash(encryptedStream.ToArray());
//Postpend tag
binaryWriter.Write(tag);
}
return encryptedStream.ToArray();
}
}
public static byte[] SimpleDecrypt(byte[] encryptedMessage, byte[] cryptKey, byte[] authKey, int nonSecretPayloadLength = 0)
{
//Basic Usage Error Checks
if (cryptKey == null || cryptKey.Length != KeyBitSize / 8)
throw new ArgumentException(String.Format("CryptKey needs to be {0} bit!", KeyBitSize), "cryptKey");
if (authKey == null || authKey.Length != KeyBitSize / 8)
throw new ArgumentException(String.Format("AuthKey needs to be {0} bit!", KeyBitSize), "authKey");
if (encryptedMessage == null || encryptedMessage.Length == 0)
throw new ArgumentException("Encrypted Message Required!", "encryptedMessage");
using (var hmac = new HMACSHA256(authKey))
{
var sentTag = new byte[hmac.HashSize / 8];
//Calculate Tag
var calcTag = hmac.ComputeHash(encryptedMessage, 0, encryptedMessage.Length - sentTag.Length);
var ivLength = (BlockBitSize / 8);
//if message length is to small just return null
if (encryptedMessage.Length < sentTag.Length + nonSecretPayloadLength + ivLength)
return null;
//Grab Sent Tag
Array.Copy(encryptedMessage, encryptedMessage.Length - sentTag.Length, sentTag, 0, sentTag.Length);
//Compare Tag with constant time comparison
var compare = 0;
for (var i = 0; i < sentTag.Length; i++)
compare |= sentTag[i] ^ calcTag[i];
//if message doesn't authenticate return null
if (compare != 0)
return null;
using (var aes = new AesManaged
{
KeySize = KeyBitSize,
BlockSize = BlockBitSize,
Mode = CipherMode.CBC,
Padding = PaddingMode.PKCS7
})
{
//Grab IV from message
var iv = new byte[ivLength];
Array.Copy(encryptedMessage, nonSecretPayloadLength, iv, 0, iv.Length);
using (var decrypter = aes.CreateDecryptor(cryptKey, iv))
using (var plainTextStream = new MemoryStream())
{
using (var decrypterStream = new CryptoStream(plainTextStream, decrypter, CryptoStreamMode.Write))
using (var binaryWriter = new BinaryWriter(decrypterStream))
{
//Decrypt Cipher Text from Message
binaryWriter.Write(
encryptedMessage,
nonSecretPayloadLength + iv.Length,
encryptedMessage.Length - nonSecretPayloadLength - iv.Length - sentTag.Length
);
}
//Return Plain Text
return plainTextStream.ToArray();
}
}
}
}
public static byte[] SimpleEncryptWithPassword(byte[] secretMessage, string password, byte[] nonSecretPayload = null)
{
nonSecretPayload = nonSecretPayload ?? new byte[] {};
//User Error Checks
if (string.IsNullOrWhiteSpace(password) || password.Length < MinPasswordLength)
throw new ArgumentException(String.Format("Must have a password of at least {0} characters!", MinPasswordLength), "password");
if (secretMessage == null || secretMessage.Length ==0)
throw new ArgumentException("Secret Message Required!", "secretMessage");
var payload = new byte[((SaltBitSize / 8) * 2) + nonSecretPayload.Length];
Array.Copy(nonSecretPayload, payload, nonSecretPayload.Length);
int payloadIndex = nonSecretPayload.Length;
byte[] cryptKey;
byte[] authKey;
//Use Random Salt to prevent pre-generated weak password attacks.
using (var generator = new Rfc2898DeriveBytes(password, SaltBitSize / 8, Iterations))
{
var salt = generator.Salt;
//Generate Keys
cryptKey = generator.GetBytes(KeyBitSize / 8);
//Create Non Secret Payload
Array.Copy(salt, 0, payload, payloadIndex, salt.Length);
payloadIndex += salt.Length;
}
//Deriving separate key, might be less efficient than using HKDF,
//but now compatible with RNEncryptor which had a very similar wireformat and requires less code than HKDF.
using (var generator = new Rfc2898DeriveBytes(password, SaltBitSize / 8, Iterations))
{
var salt = generator.Salt;
//Generate Keys
authKey = generator.GetBytes(KeyBitSize / 8);
//Create Rest of Non Secret Payload
Array.Copy(salt, 0, payload, payloadIndex, salt.Length);
}
return SimpleEncrypt(secretMessage, cryptKey, authKey, payload);
}
public static byte[] SimpleDecryptWithPassword(byte[] encryptedMessage, string password, int nonSecretPayloadLength = 0)
{
//User Error Checks
if (string.IsNullOrWhiteSpace(password) || password.Length < MinPasswordLength)
throw new ArgumentException(String.Format("Must have a password of at least {0} characters!", MinPasswordLength), "password");
if (encryptedMessage == null || encryptedMessage.Length == 0)
throw new ArgumentException("Encrypted Message Required!", "encryptedMessage");
var cryptSalt = new byte[SaltBitSize / 8];
var authSalt = new byte[SaltBitSize / 8];
//Grab Salt from Non-Secret Payload
Array.Copy(encryptedMessage, nonSecretPayloadLength, cryptSalt, 0, cryptSalt.Length);
Array.Copy(encryptedMessage, nonSecretPayloadLength + cryptSalt.Length, authSalt, 0, authSalt.Length);
byte[] cryptKey;
byte[] authKey;
//Generate crypt key
using (var generator = new Rfc2898DeriveBytes(password, cryptSalt, Iterations))
{
cryptKey = generator.GetBytes(KeyBitSize / 8);
}
//Generate auth key
using (var generator = new Rfc2898DeriveBytes(password, authSalt, Iterations))
{
authKey = generator.GetBytes(KeyBitSize / 8);
}
return SimpleDecrypt(encryptedMessage, cryptKey, authKey, cryptSalt.Length + authSalt.Length + nonSecretPayloadLength);
}
}
}
バウンシーキャッスルAES-GCM [要旨]
/*
* This work (Modern Encryption of a String C#, by James Tuley),
* identified by James Tuley, is free of known copyright restrictions.
* https://Gist.github.com/4336842
* http://creativecommons.org/publicdomain/mark/1.0/
*/
using System;
using System.IO;
using System.Text;
using Org.BouncyCastle.Crypto;
using Org.BouncyCastle.Crypto.Engines;
using Org.BouncyCastle.Crypto.Generators;
using Org.BouncyCastle.Crypto.Modes;
using Org.BouncyCastle.Crypto.Parameters;
using Org.BouncyCastle.Security;
namespace Encryption
{
public static class AESGCM
{
private static readonly SecureRandom Random = new SecureRandom();
//Preconfigured Encryption Parameters
public static readonly int NonceBitSize = 128;
public static readonly int MacBitSize = 128;
public static readonly int KeyBitSize = 256;
//Preconfigured Password Key Derivation Parameters
public static readonly int SaltBitSize = 128;
public static readonly int Iterations = 10000;
public static readonly int MinPasswordLength = 12;
/// <summary>
/// Helper that generates a random new key on each call.
/// </summary>
/// <returns></returns>
public static byte[] NewKey()
{
var key = new byte[KeyBitSize / 8];
Random.NextBytes(key);
return key;
}
/// <summary>
/// Simple Encryption And Authentication (AES-GCM) of a UTF8 string.
/// </summary>
/// <param name="secretMessage">The secret message.</param>
/// <param name="key">The key.</param>
/// <param name="nonSecretPayload">Optional non-secret payload.</param>
/// <returns>
/// Encrypted Message
/// </returns>
/// <exception cref="System.ArgumentException">Secret Message Required!;secretMessage</exception>
/// <remarks>
/// Adds overhead of (Optional-Payload + BlockSize(16) + Message + HMac-Tag(16)) * 1.33 Base64
/// </remarks>
public static string SimpleEncrypt(string secretMessage, byte[] key, byte[] nonSecretPayload = null)
{
if (string.IsNullOrEmpty(secretMessage))
throw new ArgumentException("Secret Message Required!", "secretMessage");
var plainText = Encoding.UTF8.GetBytes(secretMessage);
var cipherText = SimpleEncrypt(plainText, key, nonSecretPayload);
return Convert.ToBase64String(cipherText);
}
/// <summary>
/// Simple Decryption & Authentication (AES-GCM) of a UTF8 Message
/// </summary>
/// <param name="encryptedMessage">The encrypted message.</param>
/// <param name="key">The key.</param>
/// <param name="nonSecretPayloadLength">Length of the optional non-secret payload.</param>
/// <returns>Decrypted Message</returns>
public static string SimpleDecrypt(string encryptedMessage, byte[] key, int nonSecretPayloadLength = 0)
{
if (string.IsNullOrEmpty(encryptedMessage))
throw new ArgumentException("Encrypted Message Required!", "encryptedMessage");
var cipherText = Convert.FromBase64String(encryptedMessage);
var plainText = SimpleDecrypt(cipherText, key, nonSecretPayloadLength);
return plainText == null ? null : Encoding.UTF8.GetString(plainText);
}
/// <summary>
/// Simple Encryption And Authentication (AES-GCM) of a UTF8 String
/// using key derived from a password (PBKDF2).
/// </summary>
/// <param name="secretMessage">The secret message.</param>
/// <param name="password">The password.</param>
/// <param name="nonSecretPayload">The non secret payload.</param>
/// <returns>
/// Encrypted Message
/// </returns>
/// <remarks>
/// Significantly less secure than using random binary keys.
/// Adds additional non secret payload for key generation parameters.
/// </remarks>
public static string SimpleEncryptWithPassword(string secretMessage, string password,
byte[] nonSecretPayload = null)
{
if (string.IsNullOrEmpty(secretMessage))
throw new ArgumentException("Secret Message Required!", "secretMessage");
var plainText = Encoding.UTF8.GetBytes(secretMessage);
var cipherText = SimpleEncryptWithPassword(plainText, password, nonSecretPayload);
return Convert.ToBase64String(cipherText);
}
/// <summary>
/// Simple Decryption and Authentication (AES-GCM) of a UTF8 message
/// using a key derived from a password (PBKDF2)
/// </summary>
/// <param name="encryptedMessage">The encrypted message.</param>
/// <param name="password">The password.</param>
/// <param name="nonSecretPayloadLength">Length of the non secret payload.</param>
/// <returns>
/// Decrypted Message
/// </returns>
/// <exception cref="System.ArgumentException">Encrypted Message Required!;encryptedMessage</exception>
/// <remarks>
/// Significantly less secure than using random binary keys.
/// </remarks>
public static string SimpleDecryptWithPassword(string encryptedMessage, string password,
int nonSecretPayloadLength = 0)
{
if (string.IsNullOrWhiteSpace(encryptedMessage))
throw new ArgumentException("Encrypted Message Required!", "encryptedMessage");
var cipherText = Convert.FromBase64String(encryptedMessage);
var plainText = SimpleDecryptWithPassword(cipherText, password, nonSecretPayloadLength);
return plainText == null ? null : Encoding.UTF8.GetString(plainText);
}
public static byte[] SimpleEncrypt(byte[] secretMessage, byte[] key, byte[] nonSecretPayload = null)
{
//User Error Checks
if (key == null || key.Length != KeyBitSize / 8)
throw new ArgumentException(String.Format("Key needs to be {0} bit!", KeyBitSize), "key");
if (secretMessage == null || secretMessage.Length == 0)
throw new ArgumentException("Secret Message Required!", "secretMessage");
//Non-secret Payload Optional
nonSecretPayload = nonSecretPayload ?? new byte[] { };
//Using random nonce large enough not to repeat
var nonce = new byte[NonceBitSize / 8];
Random.NextBytes(nonce, 0, nonce.Length);
var cipher = new GcmBlockCipher(new AesFastEngine());
var parameters = new AeadParameters(new KeyParameter(key), MacBitSize, nonce, nonSecretPayload);
cipher.Init(true, parameters);
//Generate Cipher Text With Auth Tag
var cipherText = new byte[cipher.GetOutputSize(secretMessage.Length)];
var len = cipher.ProcessBytes(secretMessage, 0, secretMessage.Length, cipherText, 0);
cipher.DoFinal(cipherText, len);
//Assemble Message
using (var combinedStream = new MemoryStream())
{
using (var binaryWriter = new BinaryWriter(combinedStream))
{
//Prepend Authenticated Payload
binaryWriter.Write(nonSecretPayload);
//Prepend Nonce
binaryWriter.Write(nonce);
//Write Cipher Text
binaryWriter.Write(cipherText);
}
return combinedStream.ToArray();
}
}
public static byte[] SimpleDecrypt(byte[] encryptedMessage, byte[] key, int nonSecretPayloadLength = 0)
{
//User Error Checks
if (key == null || key.Length != KeyBitSize / 8)
throw new ArgumentException(String.Format("Key needs to be {0} bit!", KeyBitSize), "key");
if (encryptedMessage == null || encryptedMessage.Length == 0)
throw new ArgumentException("Encrypted Message Required!", "encryptedMessage");
using (var cipherStream = new MemoryStream(encryptedMessage))
using (var cipherReader = new BinaryReader(cipherStream))
{
//Grab Payload
var nonSecretPayload = cipherReader.ReadBytes(nonSecretPayloadLength);
//Grab Nonce
var nonce = cipherReader.ReadBytes(NonceBitSize / 8);
var cipher = new GcmBlockCipher(new AesFastEngine());
var parameters = new AeadParameters(new KeyParameter(key), MacBitSize, nonce, nonSecretPayload);
cipher.Init(false, parameters);
//Decrypt Cipher Text
var cipherText = cipherReader.ReadBytes(encryptedMessage.Length - nonSecretPayloadLength - nonce.Length);
var plainText = new byte[cipher.GetOutputSize(cipherText.Length)];
try
{
var len = cipher.ProcessBytes(cipherText, 0, cipherText.Length, plainText, 0);
cipher.DoFinal(plainText, len);
}
catch (InvalidCipherTextException)
{
//Return null if it doesn't authenticate
return null;
}
return plainText;
}
}
public static byte[] SimpleEncryptWithPassword(byte[] secretMessage, string password, byte[] nonSecretPayload = null)
{
nonSecretPayload = nonSecretPayload ?? new byte[] {};
//User Error Checks
if (string.IsNullOrWhiteSpace(password) || password.Length < MinPasswordLength)
throw new ArgumentException(String.Format("Must have a password of at least {0} characters!", MinPasswordLength), "password");
if (secretMessage == null || secretMessage.Length == 0)
throw new ArgumentException("Secret Message Required!", "secretMessage");
var generator = new Pkcs5S2ParametersGenerator();
//Use Random Salt to minimize pre-generated weak password attacks.
var salt = new byte[SaltBitSize / 8];
Random.NextBytes(salt);
generator.Init(
PbeParametersGenerator.Pkcs5PasswordToBytes(password.ToCharArray()),
salt,
Iterations);
//Generate Key
var key = (KeyParameter)generator.GenerateDerivedMacParameters(KeyBitSize);
//Create Full Non Secret Payload
var payload = new byte[salt.Length + nonSecretPayload.Length];
Array.Copy(nonSecretPayload, payload, nonSecretPayload.Length);
Array.Copy(salt,0, payload,nonSecretPayload.Length, salt.Length);
return SimpleEncrypt(secretMessage, key.GetKey(), payload);
}
public static byte[] SimpleDecryptWithPassword(byte[] encryptedMessage, string password, int nonSecretPayloadLength = 0)
{
//User Error Checks
if (string.IsNullOrWhiteSpace(password) || password.Length < MinPasswordLength)
throw new ArgumentException(String.Format("Must have a password of at least {0} characters!", MinPasswordLength), "password");
if (encryptedMessage == null || encryptedMessage.Length == 0)
throw new ArgumentException("Encrypted Message Required!", "encryptedMessage");
var generator = new Pkcs5S2ParametersGenerator();
//Grab Salt from Payload
var salt = new byte[SaltBitSize / 8];
Array.Copy(encryptedMessage, nonSecretPayloadLength, salt, 0, salt.Length);
generator.Init(
PbeParametersGenerator.Pkcs5PasswordToBytes(password.ToCharArray()),
salt,
Iterations);
//Generate Key
var key = (KeyParameter)generator.GenerateDerivedMacParameters(KeyBitSize);
return SimpleDecrypt(encryptedMessage, key.GetKey(), salt.Length + nonSecretPayloadLength);
}
}
}
これはRSAを使った例です。
重要: RSA暗号化KeySize - MinimumPadding
で暗号化できるデータのサイズには制限があります。 例えば256バイト(2048ビットキーを想定) - 42バイト(最小OEAPパディング)= 214バイト(最大平文サイズ)
Your_rsa_keyをRSAキーに置き換えます。
var provider = new System.Security.Cryptography.RSACryptoServiceProvider();
provider.ImportParameters(your_rsa_key);
var encryptedBytes = provider.Encrypt(
System.Text.Encoding.UTF8.GetBytes("Hello World!"), true);
string decryptedTest = System.Text.Encoding.UTF8.GetString(
provider.Decrypt(encryptedBytes, true));
あなたがASP.Netを使っているなら、あなたは今、.Net 4.0以降の組み込み機能を使うことができます。
System.Web.Security.MachineKey
.Net 4.5にはMachineKey.Protect()
とMachineKey.Unprotect()
があります。
.Net 4.0にはMachineKey.Encode()
とMachineKey.Decode()
があります。 MachineKeyProtectionを 'All'に設定するだけです。
ASP.Netの外では、このクラスはアプリの再起動のたびに新しいキーを生成するように見えるので動作しません。適切なapp.settingsがない場合は、ILSpyを覗いてみると、独自のデフォルトが生成されるようです。だからあなたは実際にASP.Netの外でそれを設定することができるかもしれません。
私はSystem.Web名前空間の外で非ASP.Net同等物を見つけることができませんでした。
BouncyCastle は.NET用の素晴らしいCryptoライブラリです。プロジェクトにインストールするための Nuget パッケージとして入手可能です。私はSystem.Security.Cryptographyライブラリで現在利用可能なものよりもずっと好きです。それはあなたに利用可能なアルゴリズムの面でもっと多くのオプションを与え、そしてそれらのアルゴリズムのためのより多くのモードを提供します。
これは TwoFish の実装の一例です。これは Bruce Schneier によって書かれました(すべての妄想的な人々の英雄)。これはRijndael(別名AES)のような対称アルゴリズムです。それはAES規格の3人のファイナリストの一人であり、BlowFishと呼ばれるBruce Schneierによって書かれた別の有名なアルゴリズムへの兄弟でした。
Bouncycastleで最初にすることは暗号化クラスを作成することです。これはライブラリ内で他のブロック暗号を実装することをより簡単にします。次の暗号化クラスは、TがIBlockCipherを実装し、デフォルトコンストラクタを持つ一般的な引数Tを取ります。
UPDATE: 一般的な要求により、私はランダムIVを生成し、このクラスにHMACを含めるように実装することにしました。スタイルの観点からすると、これは単一責任のSOLID原則に反しますが、このクラスの機能の性質上、これは廃止されました。このクラスは、暗号用とダイジェスト用の2つの汎用パラメータを取ります。それは自動的にRNGエントロピーを提供するためにRNGCryptoServiceProviderを使用してIVを生成し、あなたがMACを生成するためにBouncyCastleから欲しいどんなダイジェストアルゴリズムを使用することを可能にします。
using System;
using System.Security.Cryptography;
using System.Text;
using Org.BouncyCastle.Crypto;
using Org.BouncyCastle.Crypto.Macs;
using Org.BouncyCastle.Crypto.Modes;
using Org.BouncyCastle.Crypto.Paddings;
using Org.BouncyCastle.Crypto.Parameters;
public sealed class Encryptor<TBlockCipher, TDigest>
where TBlockCipher : IBlockCipher, new()
where TDigest : IDigest, new()
{
private Encoding encoding;
private IBlockCipher blockCipher;
private BufferedBlockCipher cipher;
private HMac mac;
private byte[] key;
public Encryptor(Encoding encoding, byte[] key, byte[] macKey)
{
this.encoding = encoding;
this.key = key;
this.Init(key, macKey, new Pkcs7Padding());
}
public Encryptor(Encoding encoding, byte[] key, byte[] macKey, IBlockCipherPadding padding)
{
this.encoding = encoding;
this.key = key;
this.Init(key, macKey, padding);
}
private void Init(byte[] key, byte[] macKey, IBlockCipherPadding padding)
{
this.blockCipher = new CbcBlockCipher(new TBlockCipher());
this.cipher = new PaddedBufferedBlockCipher(this.blockCipher, padding);
this.mac = new HMac(new TDigest());
this.mac.Init(new KeyParameter(macKey));
}
public string Encrypt(string plain)
{
return Convert.ToBase64String(EncryptBytes(plain));
}
public byte[] EncryptBytes(string plain)
{
byte[] input = this.encoding.GetBytes(plain);
var iv = this.GenerateIV();
var cipher = this.BouncyCastleCrypto(true, input, new ParametersWithIV(new KeyParameter(key), iv));
byte[] message = CombineArrays(iv, cipher);
this.mac.Reset();
this.mac.BlockUpdate(message, 0, message.Length);
byte[] digest = new byte[this.mac.GetUnderlyingDigest().GetDigestSize()];
this.mac.DoFinal(digest, 0);
var result = CombineArrays(digest, message);
return result;
}
public byte[] DecryptBytes(byte[] bytes)
{
// split the digest into component parts
var digest = new byte[this.mac.GetUnderlyingDigest().GetDigestSize()];
var message = new byte[bytes.Length - digest.Length];
var iv = new byte[this.blockCipher.GetBlockSize()];
var cipher = new byte[message.Length - iv.Length];
Buffer.BlockCopy(bytes, 0, digest, 0, digest.Length);
Buffer.BlockCopy(bytes, digest.Length, message, 0, message.Length);
if (!IsValidHMac(digest, message))
{
throw new CryptoException();
}
Buffer.BlockCopy(message, 0, iv, 0, iv.Length);
Buffer.BlockCopy(message, iv.Length, cipher, 0, cipher.Length);
byte[] result = this.BouncyCastleCrypto(false, cipher, new ParametersWithIV(new KeyParameter(key), iv));
return result;
}
public string Decrypt(byte[] bytes)
{
return this.encoding.GetString(DecryptBytes(bytes));
}
public string Decrypt(string cipher)
{
return this.Decrypt(Convert.FromBase64String(cipher));
}
private bool IsValidHMac(byte[] digest, byte[] message)
{
this.mac.Reset();
this.mac.BlockUpdate(message, 0, message.Length);
byte[] computed = new byte[this.mac.GetUnderlyingDigest().GetDigestSize()];
this.mac.DoFinal(computed, 0);
return AreEqual(digest,computed);
}
private static bool AreEqual(byte [] digest, byte[] computed)
{
if(digest.Length != computed.Length)
{
return false;
}
int result = 0;
for (int i = 0; i < digest.Length; i++)
{
// compute equality of all bytes before returning.
// helps prevent timing attacks:
// https://codahale.com/a-lesson-in-timing-attacks/
result |= digest[i] ^ computed[i];
}
return result == 0;
}
private byte[] BouncyCastleCrypto(bool forEncrypt, byte[] input, ICipherParameters parameters)
{
try
{
cipher.Init(forEncrypt, parameters);
return this.cipher.DoFinal(input);
}
catch (CryptoException)
{
throw;
}
}
private byte[] GenerateIV()
{
using (var provider = new RNGCryptoServiceProvider())
{
// 1st block
byte[] result = new byte[this.blockCipher.GetBlockSize()];
provider.GetBytes(result);
return result;
}
}
private static byte[] CombineArrays(byte[] source1, byte[] source2)
{
byte[] result = new byte[source1.Length + source2.Length];
Buffer.BlockCopy(source1, 0, result, 0, source1.Length);
Buffer.BlockCopy(source2, 0, result, source1.Length, source2.Length);
return result;
}
}
次に、新しいクラスのencryptメソッドとdecryptメソッドを呼び出すだけです。これは、twofishを使用した例です。
var encrypt = new Encryptor<TwofishEngine, Sha1Digest>(Encoding.UTF8, key, hmacKey);
string cipher = encrypt.Encrypt("TEST");
string plainText = encrypt.Decrypt(cipher);
TripleDESのような別のブロック暗号を置き換えるのも同じくらい簡単です。
var des = new Encryptor<DesEdeEngine, Sha1Digest>(Encoding.UTF8, key, hmacKey);
string cipher = des.Encrypt("TEST");
string plainText = des.Decrypt(cipher);
最後に、SHA256 HMACと一緒にAESを使用したい場合は、次のようにします。
var aes = new Encryptor<AesEngine, Sha256Digest>(Encoding.UTF8, key, hmacKey);
cipher = aes.Encrypt("TEST");
plainText = aes.Decrypt(cipher);
暗号化に関する最も難しい部分は、実際にはアルゴリズムではなくキーを扱います。あなたはあなたがあなたの鍵をどこに保管しているか、そしてもしあなたが持っているなら、あなたがそれらをどのように交換するかについて考えなければならないでしょう。これらのアルゴリズムはすべて時間の試練に耐え、そして破るのは非常に困難です。あなたから情報を盗もうとしている誰かがあなたのメッセージを暗号解読することに永遠に費やすつもりはない、彼らはあなたの鍵が何であるか、そしてどこにあるかを考え出そうとするだろう。つまり、#1はあなたの鍵を賢く選び、#2は安全な場所に保存し、もしあなたがweb.configとIISを使うなら、あなたは web.configの一部を暗号化する 、そして最後に鍵を交換する必要がある場合は、鍵を交換するためのプロトコルが安全であることを確認してください。
アップデート2 タイミング攻撃を軽減するためにcompareメソッドを変更。ここでより多くの情報を見なさい http://codahale.com/a-lesson-in-timing-attacks/ 。また、デフォルトでPKCS7パディングに更新され、エンドユーザーが使用するパディングを選択できるようにする新しいコンストラクタが追加されました。提案をくれてありがとう@CodesInChaos。
免責条項:このソリューションは、一般に公開されていない安静時のデータ(たとえば、構成ファイルまたはDB)に対してのみ使用してください。このシナリオでのみ、手間のかかるソリューションが@ jbtuleのソリューションよりも優れていると見なすことができます。
元の記事: jbtule の返答は、早くて汚い安全なAES文字列暗号化には少し複雑で、 Brett の返答には初期化ベクトルが固定値であるというバグがありましたこれはパディング攻撃に対して脆弱なので、私はBrettのコードを修正し、chipered文字列に追加されるランダムなIVを追加して、同じ暗号化値と暗号化値を作成しました。
暗号化
public static string Encrypt(string clearText)
{
byte[] clearBytes = Encoding.Unicode.GetBytes(clearText);
using (Aes encryptor = Aes.Create())
{
byte[] IV = new byte[15];
Rand.NextBytes(IV);
Rfc2898DeriveBytes pdb = new Rfc2898DeriveBytes(EncryptionKey, IV);
encryptor.Key = pdb.GetBytes(32);
encryptor.IV = pdb.GetBytes(16);
using (MemoryStream ms = new MemoryStream())
{
using (CryptoStream cs = new CryptoStream(ms, encryptor.CreateEncryptor(), CryptoStreamMode.Write))
{
cs.Write(clearBytes, 0, clearBytes.Length);
cs.Close();
}
clearText = Convert.ToBase64String(IV) + Convert.ToBase64String(ms.ToArray());
}
}
return clearText;
}
復号化:
public static string Decrypt(string cipherText)
{
byte[] IV = Convert.FromBase64String(cipherText.Substring(0, 20));
cipherText = cipherText.Substring(20).Replace(" ", "+");
byte[] cipherBytes = Convert.FromBase64String(cipherText);
using (Aes encryptor = Aes.Create())
{
Rfc2898DeriveBytes pdb = new Rfc2898DeriveBytes(EncryptionKey, IV);
encryptor.Key = pdb.GetBytes(32);
encryptor.IV = pdb.GetBytes(16);
using (MemoryStream ms = new MemoryStream())
{
using (CryptoStream cs = new CryptoStream(ms, encryptor.CreateDecryptor(), CryptoStreamMode.Write))
{
cs.Write(cipherBytes, 0, cipherBytes.Length);
cs.Close();
}
cipherText = Encoding.Unicode.GetString(ms.ToArray());
}
}
return cipherText;
}
EncryptionKeyを自分の鍵に置き換えます。私の実装では、ハードコーディングしてはいけないので、キーは設定ファイル(web.config\app.config)に保存されています。設定ファイルは 暗号化された でなければならないので、キーは平文として保存されません。
protected static string _Key = "";
protected static string EncryptionKey
{
get
{
if (String.IsNullOrEmpty(_Key))
{
_Key = ConfigurationManager.AppSettings["AESKey"].ToString();
}
return _Key;
}
}
暗号化
public string EncryptString(string inputString)
{
MemoryStream memStream = null;
try
{
byte[] key = { };
byte[] IV = { 12, 21, 43, 17, 57, 35, 67, 27 };
string encryptKey = "aXb2uy4z"; // MUST be 8 characters
key = Encoding.UTF8.GetBytes(encryptKey);
byte[] byteInput = Encoding.UTF8.GetBytes(inputString);
DESCryptoServiceProvider provider = new DESCryptoServiceProvider();
memStream = new MemoryStream();
ICryptoTransform transform = provider.CreateEncryptor(key, IV);
CryptoStream cryptoStream = new CryptoStream(memStream, transform, CryptoStreamMode.Write);
cryptoStream.Write(byteInput, 0, byteInput.Length);
cryptoStream.FlushFinalBlock();
}
catch (Exception ex)
{
Response.Write(ex.Message);
}
return Convert.ToBase64String(memStream.ToArray());
}
復号化:
public string DecryptString(string inputString)
{
MemoryStream memStream = null;
try
{
byte[] key = { };
byte[] IV = { 12, 21, 43, 17, 57, 35, 67, 27 };
string encryptKey = "aXb2uy4z"; // MUST be 8 characters
key = Encoding.UTF8.GetBytes(encryptKey);
byte[] byteInput = new byte[inputString.Length];
byteInput = Convert.FromBase64String(inputString);
DESCryptoServiceProvider provider = new DESCryptoServiceProvider();
memStream = new MemoryStream();
ICryptoTransform transform = provider.CreateDecryptor(key, IV);
CryptoStream cryptoStream = new CryptoStream(memStream, transform, CryptoStreamMode.Write);
cryptoStream.Write(byteInput, 0, byteInput.Length);
cryptoStream.FlushFinalBlock();
}
catch (Exception ex)
{
Response.Write(ex.Message);
}
Encoding encoding1 = Encoding.UTF8;
return encoding1.GetString(memStream.ToArray());
}
c# の文字列の暗号化と復号化を参照して、私は良い解決策の1つを見つけました:
static readonly string PasswordHash = "P@@Sw0rd";
static readonly string SaltKey = "S@LT&KEY";
static readonly string VIKey = "@1B2c3D4e5F6g7H8";
暗号化する
public static string Encrypt(string plainText)
{
byte[] plainTextBytes = Encoding.UTF8.GetBytes(plainText);
byte[] keyBytes = new Rfc2898DeriveBytes(PasswordHash, Encoding.ASCII.GetBytes(SaltKey)).GetBytes(256 / 8);
var symmetricKey = new RijndaelManaged() { Mode = CipherMode.CBC, Padding = PaddingMode.Zeros };
var encryptor = symmetricKey.CreateEncryptor(keyBytes, Encoding.ASCII.GetBytes(VIKey));
byte[] cipherTextBytes;
using (var memoryStream = new MemoryStream())
{
using (var cryptoStream = new CryptoStream(memoryStream, encryptor, CryptoStreamMode.Write))
{
cryptoStream.Write(plainTextBytes, 0, plainTextBytes.Length);
cryptoStream.FlushFinalBlock();
cipherTextBytes = memoryStream.ToArray();
cryptoStream.Close();
}
memoryStream.Close();
}
return Convert.ToBase64String(cipherTextBytes);
}
復号化のために
public static string Decrypt(string encryptedText)
{
byte[] cipherTextBytes = Convert.FromBase64String(encryptedText);
byte[] keyBytes = new Rfc2898DeriveBytes(PasswordHash, Encoding.ASCII.GetBytes(SaltKey)).GetBytes(256 / 8);
var symmetricKey = new RijndaelManaged() { Mode = CipherMode.CBC, Padding = PaddingMode.None };
var decryptor = symmetricKey.CreateDecryptor(keyBytes, Encoding.ASCII.GetBytes(VIKey));
var memoryStream = new MemoryStream(cipherTextBytes);
var cryptoStream = new CryptoStream(memoryStream, decryptor, CryptoStreamMode.Read);
byte[] plainTextBytes = new byte[cipherTextBytes.Length];
int decryptedByteCount = cryptoStream.Read(plainTextBytes, 0, plainTextBytes.Length);
memoryStream.Close();
cryptoStream.Close();
return Encoding.UTF8.GetString(plainTextBytes, 0, decryptedByteCount).TrimEnd("\0".ToCharArray());
}
をサポートするために mattmanser answer - /。これは、MachineKeyクラスを使用してURLセーフ値を暗号化/復号化する例です。
前に述べたように、ここで頭に入れておくべきことはマシンの設定を使うことです( https://msdn.Microsoft.com/ja-jp/library/ff649308.aspx )。暗号化と復号化の鍵/アルゴリズムをweb.configファイルで手動で設定できます(サイトが複数のサーバーで実行されている場合は特にこれが必要になる場合があります)。あなたはIISからキーを生成することができます(ここを参照してください: https://blogs.msdn.Microsoft.com/vijaysk/2009/05/13/iis-7-tip-10-you-can- IISマネージャからマシンキーを生成する/ )または次のようなオンラインマシンキージェネレータを使用できます。 http://www.developerfusion.com/tools/generatemachinekey/ /
private static readonly UTF8Encoding Encoder = new UTF8Encoding();
public static string Encrypt(string unencrypted)
{
if (string.IsNullOrEmpty(unencrypted))
return string.Empty;
try
{
var encryptedBytes = MachineKey.Protect(Encoder.GetBytes(unencrypted));
if (encryptedBytes != null && encryptedBytes.Length > 0)
return HttpServerUtility.UrlTokenEncode(encryptedBytes);
}
catch (Exception)
{
return string.Empty;
}
return string.Empty;
}
public static string Decrypt(string encrypted)
{
if (string.IsNullOrEmpty(encrypted))
return string.Empty;
try
{
var bytes = HttpServerUtility.UrlTokenDecode(encrypted);
if (bytes != null && bytes.Length > 0)
{
var decryptedBytes = MachineKey.Unprotect(bytes);
if(decryptedBytes != null && decryptedBytes.Length > 0)
return Encoder.GetString(decryptedBytes);
}
}
catch (Exception)
{
return string.Empty;
}
return string.Empty;
}
AES-GCM encryptionのBouncyCastleに代わるものは libsodium-net です。 libsodium Cライブラリをラップしています。 1つの素晴らしい利点は、非常に高速の暗号化のためにCPUでAES-NI拡張を使用することです。欠点は、CPUに拡張機能がないとまったく機能しないことです。ソフトウェアのフォールバックはありません。
ここでPGP暗号化を探しているなら、BouncyCastleによるPGP暗号化の使い方の例に関する以下のコメントで、PGPEncryptDecrypt
クラスは基本的にそのまま使えるようです。
http://blogs.Microsoft.co.il/kim/2009/01/23/pgp-Zip-encrypted-files-with-c/#comment-611002
ここに貼り付けるには長すぎます、わずかに修正しました: https://Gist.github.com/zaus/c0ea1fd8dad5d9590af1
これは、基本的な動く部分を示すために、ランダムIVおよびHMACとパスワードから派生した鍵でAES CBCモードを使用してC#で文字列を暗号化する簡単な例です。
private byte[] EncryptBytes(byte[] key, byte[] plaintext)
{
using (var cipher = new RijndaelManaged { Key = key })
{
using (var encryptor = cipher.CreateEncryptor())
{
var ciphertext = encryptor.TransformFinalBlock(plaintext, 0, plaintext.Length);
// IV is prepended to ciphertext
return cipher.IV.Concat(ciphertext).ToArray();
}
}
}
private byte[] DecryptBytes(byte[] key, byte[] packed)
{
using (var cipher = new RijndaelManaged { Key = key })
{
int ivSize = cipher.BlockSize / 8;
cipher.IV = packed.Take(ivSize).ToArray();
using (var encryptor = cipher.CreateDecryptor())
{
return encryptor.TransformFinalBlock(packed, ivSize, packed.Length - ivSize);
}
}
}
private byte[] AddMac(byte[] key, byte[] data)
{
using (var hmac = new HMACSHA256(key))
{
var macBytes = hmac.ComputeHash(data);
// HMAC is appended to data
return data.Concat(macBytes).ToArray();
}
}
private bool BadMac(byte[] found, byte[] computed)
{
int mismatch = 0;
// Aim for consistent timing regardless of inputs
for (int i = 0; i < found.Length; i++)
{
mismatch += found[i] == computed[i] ? 0 : 1;
}
return mismatch != 0;
}
private byte[] RemoveMac(byte[] key, byte[] data)
{
using (var hmac = new HMACSHA256(key))
{
int macSize = hmac.HashSize / 8;
var packed = data.Take(data.Length - macSize).ToArray();
var foundMac = data.Skip(packed.Length).ToArray();
var computedMac = hmac.ComputeHash(packed);
if (this.BadMac(foundMac, computedMac))
{
throw new Exception("Bad MAC");
}
return packed;
}
}
private List<byte[]> DeriveTwoKeys(string password)
{
var salt = new byte[] { 1, 2, 3, 4, 5, 6, 7, 8 };
var kdf = new Rfc2898DeriveBytes(password, salt, 10000);
var bytes = kdf.GetBytes(32); // Two keys 128 bits each
return new List<byte[]> { bytes.Take(16).ToArray(), bytes.Skip(16).ToArray() };
}
public byte[] EncryptString(string password, String message)
{
var keys = this.DeriveTwoKeys(password);
var plaintext = Encoding.UTF8.GetBytes(message);
var packed = this.EncryptBytes(keys[0], plaintext);
return this.AddMac(keys[1], packed);
}
public String DecryptString(string password, byte[] secret)
{
var keys = this.DeriveTwoKeys(password);
var packed = this.RemoveMac(keys[1], secret);
var plaintext = this.DecryptBytes(keys[0], packed);
return Encoding.UTF8.GetString(plaintext);
}
public void Example()
{
var password = "correcthorsebatterystaple";
var secret = this.EncryptString(password, "Hello World");
Console.WriteLine("secret: " + BitConverter.ToString(secret));
var recovered = this.DecryptString(password, secret);
Console.WriteLine(recovered);
}
これはBrettによってここに置かれたクラスです。ただし、暗号化および復号化のためにURL文字列に使用するときに 'Base-64 char配列の長さが無効です'というエラーが表示されたため、少し編集を加えました。
public class CryptoURL
{
private static byte[] _salt = Encoding.ASCII.GetBytes("Catto_Salt_Enter_Any_Value99");
/// <summary>
/// Encrypt the given string using AES. The string can be decrypted using
/// DecryptStringAES(). The sharedSecret parameters must match.
/// The SharedSecret for the Password Reset that is used is in the next line
/// string sharedSecret = "OneUpSharedSecret9";
/// </summary>
/// <param name="plainText">The text to encrypt.</param>
/// <param name="sharedSecret">A password used to generate a key for encryption.</param>
public static string EncryptString(string plainText, string sharedSecret)
{
if (string.IsNullOrEmpty(plainText))
throw new ArgumentNullException("plainText");
if (string.IsNullOrEmpty(sharedSecret))
throw new ArgumentNullException("sharedSecret");
string outStr = null; // Encrypted string to return
RijndaelManaged aesAlg = null; // RijndaelManaged object used to encrypt the data.
try
{
// generate the key from the shared secret and the salt
Rfc2898DeriveBytes key = new Rfc2898DeriveBytes(sharedSecret, _salt);
// Create a RijndaelManaged object
aesAlg = new RijndaelManaged();
aesAlg.Key = key.GetBytes(aesAlg.KeySize / 8);
// Create a decryptor to perform the stream transform.
ICryptoTransform encryptor = aesAlg.CreateEncryptor(aesAlg.Key, aesAlg.IV);
// Create the streams used for encryption.
using (MemoryStream msEncrypt = new MemoryStream())
{
// prepend the IV
msEncrypt.Write(BitConverter.GetBytes(aesAlg.IV.Length), 0, sizeof(int));
msEncrypt.Write(aesAlg.IV, 0, aesAlg.IV.Length);
using (CryptoStream csEncrypt = new CryptoStream(msEncrypt, encryptor, CryptoStreamMode.Write))
{
using (StreamWriter swEncrypt = new StreamWriter(csEncrypt))
{
//Write all data to the stream.
swEncrypt.Write(plainText);
}
}
outStr = HttpServerUtility.UrlTokenEncode(msEncrypt.ToArray());
//outStr = Convert.ToBase64String(msEncrypt.ToArray());
// you may need to add a reference. right click reference in solution Explorer => "add Reference" => .NET tab => select "System.Web"
}
}
finally
{
// Clear the RijndaelManaged object.
if (aesAlg != null)
aesAlg.Clear();
}
// Return the encrypted bytes from the memory stream.
return outStr;
}
/// <summary>
/// Decrypt the given string. Assumes the string was encrypted using
/// EncryptStringAES(), using an identical sharedSecret.
/// </summary>
/// <param name="cipherText">The text to decrypt.</param>
/// <param name="sharedSecret">A password used to generate a key for decryption.</param>
public static string DecryptString(string cipherText, string sharedSecret)
{
if (string.IsNullOrEmpty(cipherText))
throw new ArgumentNullException("cipherText");
if (string.IsNullOrEmpty(sharedSecret))
throw new ArgumentNullException("sharedSecret");
// Declare the RijndaelManaged object
// used to decrypt the data.
RijndaelManaged aesAlg = null;
// Declare the string used to hold
// the decrypted text.
string plaintext = null;
byte[] inputByteArray;
try
{
// generate the key from the shared secret and the salt
Rfc2898DeriveBytes key = new Rfc2898DeriveBytes(sharedSecret, _salt);
// Create the streams used for decryption.
//byte[] bytes = Convert.FromBase64String(cipherText);
inputByteArray = HttpServerUtility.UrlTokenDecode(cipherText);
using (MemoryStream msDecrypt = new MemoryStream(inputByteArray))
{
// Create a RijndaelManaged object
// with the specified key and IV.
aesAlg = new RijndaelManaged();
aesAlg.Key = key.GetBytes(aesAlg.KeySize / 8);
// Get the initialization vector from the encrypted stream
aesAlg.IV = ReadByteArray(msDecrypt);
// Create a decrytor to perform the stream transform.
ICryptoTransform decryptor = aesAlg.CreateDecryptor(aesAlg.Key, aesAlg.IV);
using (CryptoStream csDecrypt = new CryptoStream(msDecrypt, decryptor, CryptoStreamMode.Read))
{
using (StreamReader srDecrypt = new StreamReader(csDecrypt))
// Read the decrypted bytes from the decrypting stream
// and place them in a string.
plaintext = srDecrypt.ReadToEnd();
}
}
}
catch (System.Exception ex)
{
return "ERROR";
//throw ex;
}
finally
{
// Clear the RijndaelManaged object.
if (aesAlg != null)
aesAlg.Clear();
}
return plaintext;
}
static string ConvertStringArrayToString(string[] array)
{
//
// Concatenate all the elements into a StringBuilder.
//
StringBuilder builder = new StringBuilder();
foreach (string value in array)
{
builder.Append(value);
builder.Append('.');
}
return builder.ToString();
}
private static byte[] ReadByteArray(Stream s)
{
byte[] rawLength = new byte[sizeof(int)];
if (s.Read(rawLength, 0, rawLength.Length) != rawLength.Length)
{
throw new SystemException("Stream did not contain properly formatted byte array");
}
byte[] buffer = new byte[BitConverter.ToInt32(rawLength, 0)];
if (s.Read(buffer, 0, buffer.Length) != buffer.Length)
{
throw new SystemException("Did not read byte array properly");
}
return buffer;
}
}
暗号化はプログラミングでは非常に一般的な問題です。私はあなたのためにタスクを実行するためにパッケージをインストールする方が良いと思います。 Simple Aes Encryptionのような単純なオープンソースのNugetプロジェクト
キーは設定ファイルにあります、従ってそれは運用環境で変更することは容易であり、そして私は欠点を見ません
<MessageEncryption>
<EncryptionKey KeySize="256" Key="3q2+796tvu/erb7v3q2+796tvu/erb7v3q2+796tvu8="/>
</MessageEncryption>
次の例は、サンプルデータを暗号化および復号化する方法を示しています。
// This constant is used to determine the keysize of the encryption algorithm in bits.
// We divide this by 8 within the code below to get the equivalent number of bytes.
private const int Keysize = 128;
// This constant determines the number of iterations for the password bytes generation function.
private const int DerivationIterations = 1000;
public static string Encrypt(string plainText, string passPhrase)
{
// Salt and IV is randomly generated each time, but is preprended to encrypted cipher text
// so that the same Salt and IV values can be used when decrypting.
var saltStringBytes = GenerateBitsOfRandomEntropy(16);
var ivStringBytes = GenerateBitsOfRandomEntropy(16);
var plainTextBytes = Encoding.UTF8.GetBytes(plainText);
using (var password = new Rfc2898DeriveBytes(passPhrase, saltStringBytes, DerivationIterations))
{
var keyBytes = password.GetBytes(Keysize / 8);
using (var symmetricKey = new RijndaelManaged())
{
symmetricKey.BlockSize = 128;
symmetricKey.Mode = CipherMode.CBC;
symmetricKey.Padding = PaddingMode.PKCS7;
using (var encryptor = symmetricKey.CreateEncryptor(keyBytes, ivStringBytes))
{
using (var memoryStream = new MemoryStream())
{
using (var cryptoStream = new CryptoStream(memoryStream, encryptor, CryptoStreamMode.Write))
{
cryptoStream.Write(plainTextBytes, 0, plainTextBytes.Length);
cryptoStream.FlushFinalBlock();
// Create the final bytes as a concatenation of the random salt bytes, the random iv bytes and the cipher bytes.
var cipherTextBytes = saltStringBytes;
cipherTextBytes = cipherTextBytes.Concat(ivStringBytes).ToArray();
cipherTextBytes = cipherTextBytes.Concat(memoryStream.ToArray()).ToArray();
memoryStream.Close();
cryptoStream.Close();
return Convert.ToBase64String(cipherTextBytes);
}
}
}
}
}
}
public static string Decrypt(string cipherText, string passPhrase)
{
// Get the complete stream of bytes that represent:
// [32 bytes of Salt] + [32 bytes of IV] + [n bytes of CipherText]
var cipherTextBytesWithSaltAndIv = Convert.FromBase64String(cipherText);
// Get the saltbytes by extracting the first 32 bytes from the supplied cipherText bytes.
var saltStringBytes = cipherTextBytesWithSaltAndIv.Take(Keysize / 8).ToArray();
// Get the IV bytes by extracting the next 32 bytes from the supplied cipherText bytes.
var ivStringBytes = cipherTextBytesWithSaltAndIv.Skip(Keysize / 8).Take(Keysize / 8).ToArray();
// Get the actual cipher text bytes by removing the first 64 bytes from the cipherText string.
var cipherTextBytes = cipherTextBytesWithSaltAndIv.Skip((Keysize / 8) * 2).Take(cipherTextBytesWithSaltAndIv.Length - ((Keysize / 8) * 2)).ToArray();
using (var password = new Rfc2898DeriveBytes(passPhrase, saltStringBytes, DerivationIterations))
{
var keyBytes = password.GetBytes(Keysize / 8);
using (var symmetricKey = new RijndaelManaged())
{
symmetricKey.BlockSize = 128;
symmetricKey.Mode = CipherMode.CBC;
symmetricKey.Padding = PaddingMode.PKCS7;
using (var decryptor = symmetricKey.CreateDecryptor(keyBytes, ivStringBytes))
{
using (var memoryStream = new MemoryStream(cipherTextBytes))
{
using (var cryptoStream = new CryptoStream(memoryStream, decryptor, CryptoStreamMode.Read))
{
var plainTextBytes = new byte[cipherTextBytes.Length];
var decryptedByteCount = cryptoStream.Read(plainTextBytes, 0, plainTextBytes.Length);
memoryStream.Close();
cryptoStream.Close();
return Encoding.UTF8.GetString(plainTextBytes, 0, decryptedByteCount);
}
}
}
}
}
}
private static byte[] GenerateBitsOfRandomEntropy(int size)
{
// 32 Bytes will give us 256 bits.
// 16 Bytes will give us 128 bits.
var randomBytes = new byte[size];
using (var rngCsp = new RNGCryptoServiceProvider())
{
// Fill the array with cryptographically secure random bytes.
rngCsp.GetBytes(randomBytes);
}
return randomBytes;
}
using System;
using System.IO;
using System.Security.Cryptography;
using System.Text;
public class Program
{
public static void Main()
{
var key = Encoding.UTF8.GetBytes("SUkbqO2ycDo7QwpR25kfgmC7f8CoyrZy");
var data = Encoding.UTF8.GetBytes("testData");
//Encrypt data
var encrypted = CryptoHelper.EncryptData(data,key);
//Decrypt data
var decrypted = CryptoHelper.DecryptData(encrypted,key);
//Display result
Console.WriteLine(Encoding.UTF8.GetString(decrypted));
}
}
public static class CryptoHelper
{
public static byte[] EncryptData(byte[] data, byte[] key)
{
using (var aesAlg = Aes.Create())
{
aesAlg.Mode = CipherMode.CBC;
using (var encryptor = aesAlg.CreateEncryptor(key, aesAlg.IV))
{
using (var msEncrypt = new MemoryStream())
{
msEncrypt.Write(aesAlg.IV, 0, aesAlg.IV.Length);
using (var csEncrypt = new CryptoStream(msEncrypt, encryptor, CryptoStreamMode.Write))
csEncrypt.Write(data, 0, data.Length);
return msEncrypt.ToArray();
}
}
}
}
public static byte[] DecryptData(byte[] encrypted, byte[] key)
{
var iv = new byte[16];
Buffer.BlockCopy(encrypted, 0, iv, 0, iv.Length);
using (var aesAlg = Aes.Create())
{
aesAlg.Mode = CipherMode.CBC;
using (var decryptor = aesAlg.CreateDecryptor(key, iv))
{
using (var msDecrypt = new MemoryStream(encrypted, iv.Length, encrypted.Length - iv.Length))
{
using (var csDecrypt = new CryptoStream(msDecrypt, decryptor, CryptoStreamMode.Read))
{
using (var resultStream = new MemoryStream())
{
csDecrypt.CopyTo(resultStream);
return resultStream.ToArray();
}
}
}
}
}
}
}
これはもともとASPスニペットによる単純なスニペットです。
using System.Text;
using System.Security.Cryptography;
using System.IO;
private string Encrypt(string clearText)
{
string EncryptionKey = "yourkey";
byte[] clearBytes = Encoding.Unicode.GetBytes(clearText);
using (Aes encryptor = Aes.Create())
{
Rfc2898DeriveBytes pdb = new Rfc2898DeriveBytes(EncryptionKey, new byte[] { 0x49, 0x76, 0x61, 0x6e, 0x20, 0x4d, 0x65, 0x64, 0x76, 0x65, 0x64, 0x65, 0x76 });
encryptor.Key = pdb.GetBytes(32);
encryptor.IV = pdb.GetBytes(16);
using (MemoryStream ms = new MemoryStream())
{
using (CryptoStream cs = new CryptoStream(ms, encryptor.CreateEncryptor(), CryptoStreamMode.Write))
{
cs.Write(clearBytes, 0, clearBytes.Length);
cs.Close();
}
clearText = Convert.ToBase64String(ms.ToArray());
}
}
return clearText;
}
private string Decrypt(string cipherText)
{
string EncryptionKey = "yourkey";
cipherText = cipherText.Replace(" ", "+");
byte[] cipherBytes = Convert.FromBase64String(cipherText);
using (Aes encryptor = Aes.Create())
{
Rfc2898DeriveBytes pdb = new Rfc2898DeriveBytes(EncryptionKey, new byte[] { 0x49, 0x76, 0x61, 0x6e, 0x20, 0x4d, 0x65, 0x64, 0x76, 0x65, 0x64, 0x65, 0x76 });
encryptor.Key = pdb.GetBytes(32);
encryptor.IV = pdb.GetBytes(16);
using (MemoryStream ms = new MemoryStream())
{
using (CryptoStream cs = new CryptoStream(ms, encryptor.CreateDecryptor(), CryptoStreamMode.Write))
{
cs.Write(cipherBytes, 0, cipherBytes.Length);
cs.Close();
}
cipherText = Encoding.Unicode.GetString(ms.ToArray());
}
}
return cipherText;
}
私の 答え で同様の質問からコピーされた: C#のための単純な双方向暗号化 。
複数の回答とコメントに基づいています。
コード:
/// <summary>
/// Simple encryption/decryption using a random initialization vector
/// and prepending it to the crypto text.
/// </summary>
/// <remarks>Based on multiple answers in https://stackoverflow.com/questions/165808/simple-two-way-encryption-for-c-sharp </remarks>
public class SimpleAes : IDisposable
{
/// <summary>
/// Initialization vector length in bytes.
/// </summary>
private const int IvBytes = 16;
/// <summary>
/// Must be exactly 16, 24 or 32 characters long.
/// </summary>
private static readonly byte[] Key = Convert.FromBase64String("FILL ME WITH 16, 24 OR 32 CHARS");
private readonly UTF8Encoding _encoder;
private readonly ICryptoTransform _encryptor;
private readonly RijndaelManaged _rijndael;
public SimpleAes()
{
_rijndael = new RijndaelManaged {Key = Key};
_rijndael.GenerateIV();
_encryptor = _rijndael.CreateEncryptor();
_encoder = new UTF8Encoding();
}
public string Decrypt(string encrypted)
{
return _encoder.GetString(Decrypt(Convert.FromBase64String(encrypted)));
}
public void Dispose()
{
_rijndael.Dispose();
_encryptor.Dispose();
}
public string Encrypt(string unencrypted)
{
return Convert.ToBase64String(Encrypt(_encoder.GetBytes(unencrypted)));
}
private byte[] Decrypt(byte[] buffer)
{
// IV is prepended to cryptotext
byte[] iv = buffer.Take(IvBytes).ToArray();
using (ICryptoTransform decryptor = _rijndael.CreateDecryptor(_rijndael.Key, iv))
{
return decryptor.TransformFinalBlock(buffer, IvBytes, buffer.Length - IvBytes);
}
}
private byte[] Encrypt(byte[] buffer)
{
// Prepend cryptotext with IV
byte[] inputBuffer = _rijndael.IV.Concat(buffer).ToArray();
return _encryptor.TransformFinalBlock(inputBuffer, IvBytes, buffer.Length);
}
}
AESアルゴリズム
public static class CryptographyProvider
{
public static string EncryptString(string plainText, out string Key)
{
if (plainText == null || plainText.Length <= 0)
throw new ArgumentNullException("plainText");
using (Aes _aesAlg = Aes.Create())
{
Key = Convert.ToBase64String(_aesAlg.Key);
ICryptoTransform _encryptor = _aesAlg.CreateEncryptor(_aesAlg.Key, _aesAlg.IV);
using (MemoryStream _memoryStream = new MemoryStream())
{
_memoryStream.Write(_aesAlg.IV, 0, 16);
using (CryptoStream _cryptoStream = new CryptoStream(_memoryStream, _encryptor, CryptoStreamMode.Write))
{
using (StreamWriter _streamWriter = new StreamWriter(_cryptoStream))
{
_streamWriter.Write(plainText);
}
return Convert.ToBase64String(_memoryStream.ToArray());
}
}
}
}
public static string DecryptString(string cipherText, string Key)
{
if (string.IsNullOrEmpty(cipherText))
throw new ArgumentNullException("cipherText");
if (string.IsNullOrEmpty(Key))
throw new ArgumentNullException("Key");
string plaintext = null;
byte[] _initialVector = new byte[16];
byte[] _Key = Convert.FromBase64String(Key);
byte[] _cipherTextBytesArray = Convert.FromBase64String(cipherText);
byte[] _originalString = new byte[_cipherTextBytesArray.Length - 16];
Array.Copy(_cipherTextBytesArray, 0, _initialVector, 0, _initialVector.Length);
Array.Copy(_cipherTextBytesArray, 16, _originalString, 0, _cipherTextBytesArray.Length - 16);
using (Aes _aesAlg = Aes.Create())
{
_aesAlg.Key = _Key;
_aesAlg.IV = _initialVector;
ICryptoTransform decryptor = _aesAlg.CreateDecryptor(_aesAlg.Key, _aesAlg.IV);
using (MemoryStream _memoryStream = new MemoryStream(_originalString))
{
using (CryptoStream _cryptoStream = new CryptoStream(_memoryStream, decryptor, CryptoStreamMode.Read))
{
using (StreamReader _streamReader = new StreamReader(_cryptoStream))
{
plaintext = _streamReader.ReadToEnd();
}
}
}
}
return plaintext;
}
}
これがサンプルです Bouncy castleパッケージを使ってAES-GCM暗号化/復号化を行う方法。
GOlangのcrypto/aes
apiからデータを復号化する可能性をgoogledされたとき、私はそのサンプルを見つけました:
const (
gcmBlockSize = 16 // this is key size
gcmTagSize = 16 // this is mac
gcmStandardNonceSize = 12 // this is nonce
)
func encrypt(data []byte, passphrase string) []byte {
block, _ := aes.NewCipher([]byte(createHash(passphrase)))
gcm, err := cipher.NewGCM(block)
if err != nil {
panic(err.Error())
}
nonce := make([]byte, gcm.NonceSize())
if _, err = io.ReadFull(Rand.Reader, nonce); err != nil {
panic(err.Error())
}
ciphertext := gcm.Seal(nonce, nonce, data, nil)
return ciphertext
}
純サンプルはキー(256ビット)、マック(128ビット)および一回だけ(96ビット)の魅力のように働く。
using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Security.Cryptography;
using System.IO;
using System.Text;
/// <summary>
/// Summary description for Encryption
/// </summary>
public class Encryption
{
public TripleDES CreateDES(string key)
{
MD5 md5 = new MD5CryptoServiceProvider();
TripleDES des = new TripleDESCryptoServiceProvider();
des.Key = md5.ComputeHash(Encoding.Unicode.GetBytes(key));
des.IV = new byte[des.BlockSize / 8];
return des;
}
public byte[] Encryptiondata(string PlainText)
{
TripleDES des = CreateDES("DreamMLMKey");
ICryptoTransform ct = des.CreateEncryptor();
byte[] input = Encoding.Unicode.GetBytes(PlainText);
return ct.TransformFinalBlock(input, 0, input.Length);
}
public string Decryptiondata(string CypherText)
{
string stringToDecrypt = CypherText.Replace(" ", "+");
int len = stringToDecrypt.Length;
byte[] inputByteArray = Convert.FromBase64String(stringToDecrypt);
byte[] b = Convert.FromBase64String(CypherText);
TripleDES des = CreateDES("DreamMLMKey");
ICryptoTransform ct = des.CreateDecryptor();
byte[] output = ct.TransformFinalBlock(b, 0, b.Length);
return Encoding.Unicode.GetString(output);
}
public string Decryptiondataurl(string CypherText)
{
string newcyperttext=CypherText.Replace(' ', '+');
byte[] b = Convert.FromBase64String(newcyperttext);
TripleDES des = CreateDES("DreamMLMKey");
ICryptoTransform ct = des.CreateDecryptor();
byte[] output = ct.TransformFinalBlock(b, 0, b.Length);
return Encoding.Unicode.GetString(output);
}
#region encryption & Decription
public string Encrypt(string input, string key)
{
byte[] inputArray = UTF8Encoding.UTF8.GetBytes(input);
TripleDESCryptoServiceProvider tripleDES = new TripleDESCryptoServiceProvider();
tripleDES.Key = UTF8Encoding.UTF8.GetBytes(key);
tripleDES.Mode = CipherMode.ECB;
tripleDES.Padding = PaddingMode.PKCS7;
ICryptoTransform cTransform = tripleDES.CreateEncryptor();
byte[] resultArray = cTransform.TransformFinalBlock(inputArray, 0, inputArray.Length);
tripleDES.Clear();
return Convert.ToBase64String(resultArray, 0, resultArray.Length);
}
public string Decrypt(string input, string key)
{
byte[] inputArray = Convert.FromBase64String(input);
TripleDESCryptoServiceProvider tripleDES = new TripleDESCryptoServiceProvider();
tripleDES.Key = UTF8Encoding.UTF8.GetBytes(key);
tripleDES.Mode = CipherMode.ECB;
tripleDES.Padding = PaddingMode.PKCS7;
ICryptoTransform cTransform = tripleDES.CreateDecryptor();
byte[] resultArray = cTransform.TransformFinalBlock(inputArray, 0, inputArray.Length);
tripleDES.Clear();
return UTF8Encoding.UTF8.GetString(resultArray);
}
public string encrypt(string encryptString)
{
string EncryptionKey = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ";
byte[] clearBytes = Encoding.Unicode.GetBytes(encryptString);
using (Aes encryptor = Aes.Create())
{
Rfc2898DeriveBytes pdb = new Rfc2898DeriveBytes(EncryptionKey, new byte[] {
0x49, 0x76, 0x61, 0x6e, 0x20, 0x4d, 0x65, 0x64, 0x76, 0x65, 0x64, 0x65, 0x76
});
encryptor.Key = pdb.GetBytes(32);
encryptor.IV = pdb.GetBytes(16);
using (MemoryStream ms = new MemoryStream())
{
using (CryptoStream cs = new CryptoStream(ms, encryptor.CreateEncryptor(), CryptoStreamMode.Write))
{
cs.Write(clearBytes, 0, clearBytes.Length);
cs.Close();
}
encryptString = Convert.ToBase64String(ms.ToArray());
}
}
return encryptString;
}
public string Decrypt(string cipherText)
{
string EncryptionKey = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ";
cipherText = cipherText.Replace(" ", "+");
byte[] cipherBytes = Convert.FromBase64String(cipherText);
using (Aes encryptor = Aes.Create())
{
Rfc2898DeriveBytes pdb = new Rfc2898DeriveBytes(EncryptionKey, new byte[] {
0x49, 0x76, 0x61, 0x6e, 0x20, 0x4d, 0x65, 0x64, 0x76, 0x65, 0x64, 0x65, 0x76
});
encryptor.Key = pdb.GetBytes(32);
encryptor.IV = pdb.GetBytes(16);
using (MemoryStream ms = new MemoryStream())
{
using (CryptoStream cs = new CryptoStream(ms, encryptor.CreateDecryptor(), CryptoStreamMode.Write))
{
cs.Write(cipherBytes, 0, cipherBytes.Length);
cs.Close();
}
cipherText = Encoding.Unicode.GetString(ms.ToArray());
}
}
return cipherText;
}
#endregion
}
以下のコードはGhazalの answer を改良した question の改良版です。
public class EncryptionHelper
{
private Aes aesEncryptor;
public EncryptionHelper()
{
}
private void BuildAesEncryptor(string key)
{
aesEncryptor = Aes.Create();
var pdb = new Rfc2898DeriveBytes(key, new byte[] { 0x49, 0x76, 0x61, 0x6e, 0x20, 0x4d, 0x65, 0x64, 0x76, 0x65, 0x64, 0x65, 0x76 });
aesEncryptor.Key = pdb.GetBytes(32);
aesEncryptor.IV = pdb.GetBytes(16);
}
public string EncryptString(string clearText, string key)
{
BuildAesEncryptor(key);
var clearBytes = Encoding.Unicode.GetBytes(clearText);
using (var ms = new MemoryStream())
{
using (var cs = new CryptoStream(ms, aesEncryptor.CreateEncryptor(), CryptoStreamMode.Write))
{
cs.Write(clearBytes, 0, clearBytes.Length);
}
var encryptedText = Convert.ToBase64String(ms.ToArray());
return encryptedText;
}
}
public string DecryptString(string cipherText, string key)
{
BuildAesEncryptor(key);
cipherText = cipherText.Replace(" ", "+");
var cipherBytes = Convert.FromBase64String(cipherText);
using (var ms = new MemoryStream())
{
using (var cs = new CryptoStream(ms, aesEncryptor.CreateDecryptor(), CryptoStreamMode.Write))
{
cs.Write(cipherBytes, 0, cipherBytes.Length);
}
var clearText = Encoding.Unicode.GetString(ms.ToArray());
return clearText;
}
}
}