私はしばらくの間(こことグーグルで明らかに)UTM座標のセットを緯度と経度に変換するためのきちんとした方法を探していました。座標があり、それらがどのゾーンにあるかはわかっていますが、これを緯度と経度に変換するにはどうすればよいですか?少なくとも魔法の一部を実行できるクラスがあることを望んでいましたが、そうではないようです:(
これに関する提案はありますか?
このコンバーターは問題なく動作しているように見えるので、私はそれができることを知っています 地理/ UTM座標コンバーター 。
どんな入力でも大歓迎です! :)
ありがとう!
この.NETライブラリを見てください http://projnet.codeplex.com/ 。これはあなたの場合に役立つはずです
ここは:
public static void ToLatLon(double utmX, double utmY, string utmZone, out double latitude, out double longitude)
{
bool isNorthHemisphere = utmZone.Last() >= 'N';
var diflat = -0.00066286966871111111111111111111111111;
var diflon = -0.0003868060578;
var zone = int.Parse(utmZone.Remove(utmZone.Length - 1));
var c_sa = 6378137.000000;
var c_sb = 6356752.314245;
var e2 = Math.Pow((Math.Pow(c_sa,2) - Math.Pow(c_sb,2)),0.5)/c_sb;
var e2cuadrada = Math.Pow(e2,2);
var c = Math.Pow(c_sa,2) / c_sb;
var x = utmX - 500000;
var y = isNorthHemisphere ? utmY : utmY - 10000000;
var s = ((zone * 6.0) - 183.0);
var lat = y / (c_sa * 0.9996);
var v = (c / Math.Pow(1 + (e2cuadrada * Math.Pow(Math.Cos(lat), 2)), 0.5)) * 0.9996;
var a = x / v;
var a1 = Math.Sin(2 * lat);
var a2 = a1 * Math.Pow((Math.Cos(lat)), 2);
var j2 = lat + (a1 / 2.0);
var j4 = ((3 * j2) + a2) / 4.0;
var j6 = ((5 * j4) + Math.Pow(a2 * (Math.Cos(lat)), 2)) / 3.0;
var alfa = (3.0 / 4.0) * e2cuadrada;
var beta = (5.0 / 3.0) * Math.Pow(alfa, 2);
var gama = (35.0 / 27.0) * Math.Pow(alfa, 3);
var bm = 0.9996 * c * (lat - alfa * j2 + beta * j4 - gama * j6);
var b = (y - bm) / v;
var epsi = ((e2cuadrada * Math.Pow(a, 2)) / 2.0) * Math.Pow((Math.Cos(lat)), 2);
var eps = a * (1 - (epsi / 3.0));
var nab = (b * (1 - epsi)) + lat;
var senoheps = (Math.Exp(eps) - Math.Exp(-eps)) / 2.0;
var delt = Math.Atan(senoheps/(Math.Cos(nab) ) );
var tao = Math.Atan(Math.Cos(delt) * Math.Tan(nab));
longitude = ((delt * (180.0 / Math.PI)) + s) + diflon;
latitude = ((lat + (1 + e2cuadrada * Math.Pow(Math.Cos(lat), 2) - (3.0 / 2.0) * e2cuadrada * Math.Sin(lat) * Math.Cos(lat) * (tao - lat)) * (tao - lat)) * (180.0 / Math.PI)) + diflat;
}
JavascriptライブラリからC#への移植を行いました。テストして完全に機能しました。ご覧ください ここ 。
このWebサイトで利用可能なc ++コードがあります: http://www.gpsy.com/gpsinfo/geotoutm/
ページを少し下に移動して「ソースコード」の見出しに移動し、下部にある次のファイルを探します。
チャックガンツ
エンクロージャー:LatLong-UTMconversion.cpp(テキストファイルとしてオンラインで表示)LatLong-UTMconversion.h(テキストファイルとしてオンラインで表示)UTMConversions.cpp(テキストファイルとしてオンラインで表示)SwissGrid.cpp(テキストファイルとしてオンラインで表示)constants.h(オンラインでテキストファイルとして表示)
例えば最初のファイルのリンク先:www.gpsy.com/gpsinfo/geotoutm/gantz/LatLong-UTMconversion.cppなど
ここには、UTMからLat Long、またはその逆の双方向の機能があります。他の場所を見ると、このコードのpythonバージョンがあります。例:code.google.com/p/pys60gps/source/browse/trunk/lib/LatLongUTMconversion.py?r = 246
その一部のc#バージョンもあります:mediakey.dk/~cc/convert-northing-and-easting-utm-to-longitude-and-latitude/
幸運を。
独自の関数をロールしたい場合は、このページで多くの役立つ情報を見つけることができます。
http://www.colorado.edu/geography/gcraft/notes/coordsys/coordsys.html
Lat-lonとUTM(両方の方法)の間で変換する関数がいくつかありますが、ここで記述するのは少し長いです。
public static void ToLatLon(double utmX, double utmY, string utmZone)
{
double latitude = 0;
double longitude = 0;
bool isNorthHemisphere = utmZone.Last() >= 'N';
var diflat = -0.00066286966871111111111111111111111111;
var diflon = -0.0003868060578;
var zone = int.Parse(utmZone.Remove(utmZone.Length - 1));
var c_sa = 6378137.000000;
var c_sb = 6356752.314245;
var e2 = Math.Pow((Math.Pow(c_sa, 2) - Math.Pow(c_sb, 2)), 0.5) / c_sb;
var e2cuadrada = Math.Pow(e2, 2);
var c = Math.Pow(c_sa, 2) / c_sb;
var x = utmX - 500000;
var y = isNorthHemisphere ? utmY : utmY - 10000000;
var s = ((zone * 6.0) - 183.0);
var lat = y / (6366197.724 * 0.9996); // Change c_sa for 6366197.724
var v = (c / Math.Pow(1 + (e2cuadrada * Math.Pow(Math.Cos(lat), 2)), 0.5)) * 0.9996;
var a = x / v;
var a1 = Math.Sin(2 * lat);
var a2 = a1 * Math.Pow((Math.Cos(lat)), 2);
var j2 = lat + (a1 / 2.0);
var j4 = ((3 * j2) + a2) / 4.0;
var j6 = (5 * j4 + a2 * Math.Pow((Math.Cos(lat)), 2)) / 3.0; // saque a2 de multiplicar por el coseno de lat y elevar al cuadrado
var alfa = (3.0 / 4.0) * e2cuadrada;
var beta = (5.0 / 3.0) * Math.Pow(alfa, 2);
var gama = (35.0 / 27.0) * Math.Pow(alfa, 3);
var bm = 0.9996 * c * (lat - alfa * j2 + beta * j4 - gama * j6);
var b = (y - bm) / v;
var epsi = ((e2cuadrada * Math.Pow(a, 2)) / 2.0) * Math.Pow((Math.Cos(lat)), 2);
var eps = a * (1 - (epsi / 3.0));
var nab = (b * (1 - epsi)) + lat;
var senoheps = (Math.Exp(eps) - Math.Exp(-eps)) / 2.0;
var delt = Math.Atan(senoheps / (Math.Cos(nab)));
var tao = Math.Atan(Math.Cos(delt) * Math.Tan(nab));
longitude = (delt / Math.PI) * 180 + s;
latitude = (((lat + (1 + e2cuadrada * Math.Pow(Math.Cos(lat), 2) - (3.0 / 2.0) * e2cuadrada * Math.Sin(lat) * Math.Cos(lat) * (tao - lat)) * (tao - lat))) / Math.PI) * 180; // era incorrecto el calculo
Console.WriteLine("Latitud: " + latitude.ToString() + "\nLongitud: " + longitude.ToString());
}
これは新しいコードです
このコードを使用します:
public static void UTMToLatLon(double Easting, double Northing, double Zone, double Hemi, out double latitude, out double longitude)
{
double DtoR = Math.PI / 180, RtoD = 180 / Math.PI;
double a = 6378137, f = 0.00335281066474748071984552861852, northernN0 = 0, southernN0 = 10000000, E0 = 500000,
n = f / (2 - f), k0 = 0.9996,
A = a * (1 + (1 / 4) * Math.Pow(n, 2) + (1 / 64) * Math.Pow(n, 4) + (1 / 256) * Math.Pow(n, 6) + (25 / 16384) * Math.Pow(n, 8) + (49 / 65536) * Math.Pow(n, 10)) / (1 + n),
beta1 = n / 2 - (2 / 3) * Math.Pow(n, 2) + (37 / 96) * Math.Pow(n, 3) - (1 / 360) * Math.Pow(n, 4) - (81 / 512) * Math.Pow(n, 5) + (96199 / 604800) * Math.Pow(n, 6) - (5406467 / 38707200) * Math.Pow(n, 7) + (7944359 / 67737600) * Math.Pow(n, 8) - (7378753979 / 97542144000) * Math.Pow(n, 9) + (25123531261 / 804722688000) * Math.Pow(n, 10),
beta2 = (1 / 48) * Math.Pow(n, 2) + (1 / 15) * Math.Pow(n, 3) - (437 / 1440) * Math.Pow(n, 4) + (46 / 105) * Math.Pow(n, 5) - (1118711 / 3870720) * Math.Pow(n, 6) + (51841 / 1209600) * Math.Pow(n, 7) + (24749483 / 348364800) * Math.Pow(n, 8) - (115295683 / 1397088000) * Math.Pow(n, 9) + (5487737251099 / 51502252032000) * Math.Pow(n, 10),
beta3 = (17 / 480) * Math.Pow(n, 3) - (37 / 840) * Math.Pow(n, 4) - (209 / 4480) * Math.Pow(n, 5) + (5569 / 90720) * Math.Pow(n, 6) + (9261899 / 58060800) * Math.Pow(n, 7) - (6457463 / 17740800) * Math.Pow(n, 8) + (2473691167 / 9289728000) * Math.Pow(n, 9) - (852549456029 / 20922789888000) * Math.Pow(n, 10),
beta4 = (4397 / 161280) * Math.Pow(n, 4) - (11 / 504) * Math.Pow(n, 5) - (830251 / 7257600) * Math.Pow(n, 6) + (466511 / 2494800) * Math.Pow(n, 7) + (324154477 / 7664025600) * Math.Pow(n, 8) - (937932223 / 3891888000) * Math.Pow(n, 9) - (89112264211 / 5230697472000) * Math.Pow(n, 10),
beta5 = (4583 / 161280) * Math.Pow(n, 5) - (108847 / 3991680) * Math.Pow(n, 6) - (8005831 / 63866880) * Math.Pow(n, 7) + (22894433 / 124540416) * Math.Pow(n, 8) + (112731569449 / 557941063680) * Math.Pow(n, 9) - (5391039814733 / 10461394944000) * Math.Pow(n, 10),
beta6 = (20648693 / 638668800) * Math.Pow(n, 6) - (16363163 / 518918400) * Math.Pow(n, 7) - (2204645983 / 12915302400) * Math.Pow(n, 8) + (4543317553 / 18162144000) * Math.Pow(n, 9) + (54894890298749 / 167382319104000) * Math.Pow(n, 10),
beta7 = (219941297 / 5535129600) * Math.Pow(n, 7) - (497323811 / 12454041600) * Math.Pow(n, 8) - (79431132943 / 332107776000) * Math.Pow(n, 9) + (4346429528407 / 12703122432000) * Math.Pow(n, 10),
beta8 = (191773887257 / 3719607091200) * Math.Pow(n, 8) - (17822319343 / 336825216000) * Math.Pow(n, 9) - (497155444501631 / 1422749712384000) * Math.Pow(n, 10),
beta9 = (11025641854267 / 158083301376000) * Math.Pow(n, 9) - (492293158444691 / 6758061133824000) * Math.Pow(n, 10),
beta10 = (7028504530429621 / 72085985427456000) * Math.Pow(n, 10),
delta1 = 2 * n - (2 / 3) * Math.Pow(n, 2) - 2 * Math.Pow(n, 3),
delta2 = (7 / 3) * Math.Pow(n, 2) - (8 / 5) * Math.Pow(n, 3),
delta3 = (56 / 15) * Math.Pow(n, 3),
ksi = (Northing / 100 - northernN0) / (k0 * A), eta = (Easting / 100 - E0) / (k0 * A),
ksi_prime = ksi - (beta1 * Math.Sin(2 * ksi) * Math.Cosh(2 * eta) + beta2 * Math.Sin(4 * ksi) * Math.Cosh(4 * eta) + beta3 * Math.Sin(6 * ksi) * Math.Cosh(6 * eta) + beta4 * Math.Sin(8 * ksi) * Math.Cosh(8 * eta) + beta5 * Math.Sin(10 * ksi) * Math.Cosh(10 * eta) +
beta6 * Math.Sin(12 * ksi) * Math.Cosh(12 * eta) + beta7 * Math.Sin(14 * ksi) * Math.Cosh(14 * eta) + beta8 * Math.Sin(16 * ksi) * Math.Cosh(16 * eta) + beta9 * Math.Sin(18 * ksi) * Math.Cosh(18 * eta) + beta10 * Math.Sin(20 * ksi) * Math.Cosh(20 * eta)),
eta_prime = eta - (beta1 * Math.Cos(2 * ksi) * Math.Sinh(2 * eta) + beta2 * Math.Cos(4 * ksi) * Math.Sinh(4 * eta) + beta3 * Math.Cos(6 * ksi) * Math.Sinh(6 * eta)),
sigma_prime = 1 - (2 * beta1 * Math.Cos(2 * ksi) * Math.Cosh(2 * eta) + 2 * beta2 * Math.Cos(4 * ksi) * Math.Cosh(4 * eta) + 2 * beta3 * Math.Cos(6 * ksi) * Math.Cosh(6 * eta)),
taw_prime = 2 * beta1 * Math.Sin(2 * ksi) * Math.Sinh(2 * eta) + 2 * beta2 * Math.Sin(4 * ksi) * Math.Sinh(4 * eta) + 2 * beta3 * Math.Sin(6 * ksi) * Math.Sinh(6 * eta),
ki = Math.Asin(Math.Sin(ksi_prime) / Math.Cosh(eta_prime));
latitude = (ki + delta1 * Math.Sin(2 * ki) + delta2 * Math.Sin(4 * ki) + delta3 * Math.Sin(6 * ki)) * RtoD;
double longitude0 = Zone * 6 * DtoR - 183 * DtoR ;
longitude = (longitude0 + Math.Atan(Math.Sinh(eta_prime) / Math.Cos(ksi_prime))) * RtoD;
}
このコードは他のコードよりもはるかに正確です。
チェックアウト CoordinateSharp NuGetで。それを使ってこれを行うのは本当に簡単です。
//Example
UniversalTransverseMercator utm = new UniversalTransverseMercator("Q", 14, 581943.5, 2111989.8);
Coordinate c = UniversalTransverseMercator.ConvertUTMtoLatLong(utm);