web-dev-qa-db-ja.com

最小、最大、中央値、平均のOpenMp C ++アルゴリズム

いくつかの簡単なOpenMpアルゴリズムを提供するページをGoogleで検索していました。おそらく、巨大なデータ配列から最小、最大、中央値、平均を計算する例がありますが、私はそれを見つけることができません。

少なくとも私は通常、配列をコアごとに1つのチャンクに分割し、後で境界計算を実行して、完全な配列の結果を取得しようとします。

車輪の再発明をしたくなかっただけです。


追記:単純な削減で機能する例が何千もあることを私は知っています。例えばPIの計算。

const int num_steps = 100000; 
double x, sum = 0.0; 
const double step = 1.0/double(num_steps); 
#pragma omp parallel for reduction(+:sum) private(x) 
for (int i=1;i<= num_steps; i++){ 
  x = double(i-0.5)*step; 
  sum += 4.0/(1.0+x*x); 
} 
const double pi = step * sum;

しかし、これらの種類のアルゴリズムが使用できない場合、アルゴリズムを削減するための例はほとんど残っていません。

27
Totonga

OpenMP(少なくとも2.0)は、いくつかの単純な操作の削減をサポートしていますが、最大および最小の削減はサポートしていません。

次の例では、reduction句を使用して合計を作成し、criticalセクションを使用して、競合のないスレッドローカル変数を使用して共有変数を更新します。

#include <iostream>
#include <cmath>

int main()
{
  double sum = 0;
  uint64_t ii;
  uint64_t maxii = 0;
  uint64_t maxii_shared = 0;
#pragma omp parallel shared(maxii_shared) private(ii) firstprivate(maxii)
  {
#pragma omp for reduction(+:sum) nowait
    for(ii=0; ii<10000000000; ++ii)
      {
        sum += std::pow((double)ii, 2.0);
        if(ii > maxii) maxii = ii;
      }
#pragma omp critical 
    {
      if(maxii > maxii_shared) maxii_shared = maxii;
    }
  }
  std::cerr << "Sum: " << sum << " (" << maxii_shared << ")" << std::endl;
}

編集:よりクリーンな実装:

#include <cmath>
#include <limits>
#include <vector>
#include <iostream>
#include <algorithm>
#include <tr1/random>

// sum the elements of v
double sum(const std::vector<double>& v)
{
  double sum = 0.0;
#pragma omp parallel for reduction(+:sum)
  for(size_t ii=0; ii< v.size(); ++ii)
    {
      sum += v[ii];
    }
  return sum;
}

// extract the minimum of v
double min(const std::vector<double>& v)
{
  double shared_min;
#pragma omp parallel 
  {
    double min = std::numeric_limits<double>::max();
#pragma omp for nowait
    for(size_t ii=0; ii<v.size(); ++ii)
      {
        min = std::min(v[ii], min);
      }
#pragma omp critical 
    {
      shared_min = std::min(shared_min, min);
    }
  }
  return shared_min;
}

// generate a random vector and use sum and min functions.
int main()
{
  using namespace std;
  using namespace std::tr1;

  std::tr1::mt19937 engine(time(0));
  std::tr1::uniform_real<> unigen(-1000.0,1000.0);
  std::tr1::variate_generator<std::tr1::mt19937, 
    std::tr1::uniform_real<> >gen(engine, unigen);

  std::vector<double> random(1000000);
  std::generate(random.begin(), random.end(), gen);

  cout << "Sum: " << sum(random) << " Mean:" << sum(random)/random.size()
       << " Min:" << min(random) << endl;
}
23
baol

openMP 3.1以降では、最小、最大、削減句を実装できます。これをカバーする詳細な例を このリンク で見ることができます。

10
Mahesh

OpenMPは、これらの削減操作をサポートしていません。任意のアルゴリズムを実装できるIntelThreading BuildingBlocksのparallel_reduceアルゴリズムを検討してください。

ここに例があります。部分的な結果の合計を使用します。必要な機能を実装できます。

#include <stdio.h>
#include <tbb/blocked_range.h>
#include <tbb/parallel_reduce.h>
#include <tbb/task_scheduler_init.h>


///////////////////////////////////////////////////////////////////////////////


class PiCalculation
{
private:
    long num_steps;
    double step;

public:

    // Pi partial value
    double pi;

    // Calculate partial value
    void operator () (const tbb::blocked_range<long> &r) 
    {
        double sum = 0.0;

        long end = r.end();

        for (int i = r.begin(); i != end; i++)
        {
            double x = (i + 0.5) * step;
            sum += 4.0/(1.0 + x * x);
        }

        pi += sum * step;
    }

    // Combine results. Here you can implement any functions
    void join(PiCalculation &p)
    {
        pi += p.pi;
    }

    PiCalculation(PiCalculation &p, tbb::split)
    {
        pi = 0.0;
        num_steps = p.num_steps;
        step = p.step;
    }

    PiCalculation(long steps)
    {
        pi = 0.0;
        num_steps = steps;
        step = 1./(double)num_steps;
    }
};


///////////////////////////////////////////////////////////////////////////////


int main()
{
    tbb::task_scheduler_init init;

    const long steps = 100000000;

    PiCalculation pi(steps);

    tbb::parallel_reduce(tbb::blocked_range<long>(0, steps, 1000000), pi);

    printf ("Pi is %3.20f\n", pi.pi);
}

追加の削減アルゴリズムについては、このリンクを確認してください。 http://cache-www.intel.com/cd/00/00/30/11/301132_301132.pdf#page=19 3.3.1項をご覧ください。配列内の最小値を見つける例があります。

5

これは典型的な削減の問題です。

Suveshが指すページ の他に、 削減句 のドキュメントを参照してください。

3