Constexpr関数fがあるとします。
constexpr int f(int x) { ... }
そして、コンパイル時に既知のconst intNがいくつかあります。
どちらか
#define N ...;
または
const int N = ...;
あなたの答えによって必要に応じて。
Int配列Xが欲しい:
int X[N] = { f(0), f(1), f(2), ..., f(N-1) }
関数がコンパイル時に評価され、Xのエントリがコンパイラによって計算され、結果がX初期化子リストで整数リテラルを使用した場合とまったく同じようにアプリケーションイメージの静的領域に配置されます。
これを書く方法はありますか? (たとえば、テンプレートやマクロなどを使用)
私が持っている最高のもの:( Flexoのおかげで)
#include <iostream>
#include <array>
using namespace std;
constexpr int N = 10;
constexpr int f(int x) { return x*2; }
typedef array<int, N> A;
template<int... i> constexpr A fs() { return A{{ f(i)... }}; }
template<int...> struct S;
template<int... i> struct S<0,i...>
{ static constexpr A gs() { return fs<0,i...>(); } };
template<int i, int... j> struct S<i,j...>
{ static constexpr A gs() { return S<i-1,i,j...>::gs(); } };
constexpr auto X = S<N-1>::gs();
int main()
{
cout << X[3] << endl;
}
この問題に対する純粋なC++ 11(ブーストなし、マクロもなし)ソリューションがあります。 この回答 と同じトリックを使用して、一連の数値を作成し、それらを解凍してf
を呼び出してstd::array
を作成できます。
#include <array>
#include <algorithm>
#include <iterator>
#include <iostream>
template<int ...>
struct seq { };
template<int N, int ...S>
struct gens : gens<N-1, N-1, S...> { };
template<int ...S>
struct gens<0, S...> {
typedef seq<S...> type;
};
constexpr int f(int n) {
return n;
}
template <int N>
class array_thinger {
typedef typename gens<N>::type list;
template <int ...S>
static constexpr std::array<int,N> make_arr(seq<S...>) {
return std::array<int,N>{{f(S)...}};
}
public:
static constexpr std::array<int,N> arr = make_arr(list());
};
template <int N>
constexpr std::array<int,N> array_thinger<N>::arr;
int main() {
std::copy(begin(array_thinger<10>::arr), end(array_thinger<10>::arr),
std::ostream_iterator<int>(std::cout, "\n"));
}
(g ++ 4.7でテスト済み)
std::array
を完全にスキップすることもできますが、この場合はstd::array
を使用する方がクリーンで簡単だと思います。
これを再帰的に行うこともできます。
#include <array>
#include <functional>
#include <algorithm>
#include <iterator>
#include <iostream>
constexpr int f(int n) {
return n;
}
template <int N, int ...Vals>
constexpr
typename std::enable_if<N==sizeof...(Vals),std::array<int, N>>::type
make() {
return std::array<int,N>{{Vals...}};
}
template <int N, int ...Vals>
constexpr
typename std::enable_if<N!=sizeof...(Vals), std::array<int,N>>::type
make() {
return make<N, Vals..., f(sizeof...(Vals))>();
}
int main() {
const auto arr = make<10>();
std::copy(begin(arr), end(arr), std::ostream_iterator<int>(std::cout, "\n"));
}
これは間違いなく簡単です。
アレイを静的メモリに配置する場合は、次のことを試してください。
template<class T> struct id { typedef T type; };
template<int...> struct int_pack {};
template<int N, int...Tail> struct make_int_range
: make_int_range<N-1,N-1,Tail...> {};
template<int...Tail> struct make_int_range<0,Tail...>
: id<int_pack<Tail...>> {};
#include <array>
constexpr int f(int n) { return n*(n+1)/2; }
template<class Indices = typename make_int_range<10>::type>
struct my_lookup_table;
template<int...Indices>
struct my_lookup_table<int_pack<Indices...>>
{
static const int size = sizeof...(Indices);
typedef std::array<int,size> array_type;
static const array_type& get()
{
static const array_type arr = {{f(Indices)...}};
return arr;
}
};
#include <iostream>
int main()
{
auto& lut = my_lookup_table<>::get();
for (int i : lut)
std::cout << i << std::endl;
}
アレイのローカルコピーを機能させたい場合は、アンパサンドを削除するだけです。
Boost.Preprocessorがお手伝いします。ただし、制限は、N
の代わりに10
などの整数リテラルを使用する必要があることです(コンパイル時定数であっても)。
#include <iostream>
#include <boost/preprocessor/repetition/enum.hpp>
#define VALUE(z, n, text) f(n)
//ideone doesn't support Boost for C++11, so it is C++03 example,
//so can't use constexpr in the function below
int f(int x) { return x * 10; }
int main() {
int const a[] = { BOOST_PP_ENUM(10, VALUE, ~) }; //N = 10
std::size_t const n = sizeof(a)/sizeof(int);
std::cout << "count = " << n << "\n";
for(std::size_t i = 0 ; i != n ; ++i )
std::cout << a[i] << "\n";
return 0;
}
出力( ideone ):
count = 10
0
10
20
30
40
50
60
70
80
90
次の行のマクロ:
int const a[] = { BOOST_PP_ENUM(10, VALUE, ~) };
これに拡張します:
int const a[] = {f(0), f(1), ... f(9)};
より詳細な説明はここにあります:
ここにはかなりの数の素晴らしい答えがあります。質問とタグはc++11
を指定しますが、数年が経過すると、(私のように)この質問に出くわした人はc++14
を使用する可能性があります。その場合、std::integer_sequence
を使用して、これを非常にクリーンかつ簡潔に行うことができます。さらに、現在の「Best I Have」は再帰の深さによって制限されるため、はるかに長い配列をインスタンス化するために使用できます。
constexpr std::size_t f(std::size_t x) { return x*x; } // A constexpr function
constexpr std::size_t N = 5; // Length of array
using TSequence = std::make_index_sequence<N>;
static_assert(std::is_same<TSequence, std::integer_sequence<std::size_t, 0, 1, 2, 3, 4>>::value,
"Make index sequence uses std::size_t and produces a parameter pack from [0,N)");
using TArray = std::array<std::size_t,N>;
// When you call this function with a specific std::integer_sequence,
// the parameter pack i... is used to deduce the the template parameter
// pack. Once this is known, this parameter pack is expanded in
// the body of the function, calling f(i) for each i in [0,N).
template<std::size_t...i>
constexpr TArray
get_array(std::integer_sequence<std::size_t,i...>)
{
return TArray{{ f(i)... }};
}
int main()
{
constexpr auto s = TSequence();
constexpr auto a = get_array(s);
for (const auto &i : a) std::cout << i << " "; // 0 1 4 9 16
return EXIT_SUCCESS;
}
FlexoとAndrewTomazosからの回答を少し拡張して、ユーザーが計算範囲と評価する関数を指定できるようにしました。
#include <array>
#include <iostream>
#include <iomanip>
template<typename ComputePolicy, int min, int max, int ... expandedIndices>
struct ComputeEngine
{
static const int lengthOfArray = max - min + sizeof... (expandedIndices) + 1;
typedef std::array<typename ComputePolicy::ValueType, lengthOfArray> FactorArray;
static constexpr FactorArray compute( )
{
return ComputeEngine<ComputePolicy, min, max - 1, max, expandedIndices...>::compute( );
}
};
template<typename ComputePolicy, int min, int ... expandedIndices>
struct ComputeEngine<ComputePolicy, min, min, expandedIndices...>
{
static const int lengthOfArray = sizeof... (expandedIndices) + 1;
typedef std::array<typename ComputePolicy::ValueType, lengthOfArray> FactorArray;
static constexpr FactorArray compute( )
{
return FactorArray { { ComputePolicy::compute( min ), ComputePolicy::compute( expandedIndices )... } };
}
};
/// compute 1/j
struct ComputePolicy1
{
typedef double ValueType;
static constexpr ValueType compute( int i )
{
return i > 0 ? 1.0 / i : 0.0;
}
};
/// compute j^2
struct ComputePolicy2
{
typedef int ValueType;
static constexpr ValueType compute( int i )
{
return i * i;
}
};
constexpr auto factors1 = ComputeEngine<ComputePolicy1, 4, 7>::compute( );
constexpr auto factors2 = ComputeEngine<ComputePolicy2, 3, 9>::compute( );
int main( void )
{
using namespace std;
cout << "Values of factors1" << endl;
for ( int i = 0; i < factors1.size( ); ++i )
{
cout << setw( 4 ) << i << setw( 15 ) << factors1[i] << endl;
}
cout << "------------------------------------------" << endl;
cout << "Values of factors2" << endl;
for ( int i = 0; i < factors2.size( ); ++i )
{
cout << setw( 4 ) << i << setw( 15 ) << factors2[i] << endl;
}
return 0;
}
これはどう?
#include <array>
#include <iostream>
constexpr int f(int i) { return 2 * i; }
template <int N, int... Ts>
struct t { using type = typename t<N - 1, Ts..., 101 - N>::type; };
template <int... Ts>
struct t<0u, Ts...>
{
using type = t<0u, Ts...>;
static std::array<int, sizeof...(Ts)> apply() { return {{f(Ts)...}}; }
};
int main()
{
using v = typename t<100>::type;
auto x = v::apply();
}
これは、元のシーケンスの要素を明示的に宣言する、より簡潔な答えです。
#include <array>
constexpr int f(int i) { return 2 * i; }
template <int... Ts>
struct sequence
{
using result = sequence<f(Ts)...>;
static std::array<int, sizeof...(Ts)> apply() { return {{Ts...}}; }
};
using v1 = sequence<1, 2, 3, 4>;
using v2 = typename v1::result;
int main()
{
auto x = v2::apply();
return 0;
}