web-dev-qa-db-ja.com

Windowsへのclock_gettimeの移植

次のコードをqnx momemnticsで実行しています。

#define BILLION 1000000000L;

struct timespec start_time;
struct timespec stop_time; 

void start MyTestFunc() {
    //Initialize the Test Start time
     clock_gettime(CLOCK_REALTIME,&start_time)
    // ... additonal code.

    cout << "The exectuion time of func "<< calculateExecutionTime();
}


double calculateExecutionTime ()
{

    clock_gettime(CLOCK_REALTIME,&stop_time);

    double dSeconds = (stop_time.tv_sec - start_time.tv_sec);

    double dNanoSeconds = (double)( stop_time.tv_nsec - start_time.tv_nsec ) / BILLION;

    return dSeconds + dNanoSeconds;
}

次に、上記のコードをWindowsに移植します。誰でもサンプルコードを提供できます。

ありがとう!

20
venkysmarty

次のように、windowsのclock_gettime()置換を実装できます。

LARGE_INTEGER
getFILETIMEoffset()
{
    SYSTEMTIME s;
    FILETIME f;
    LARGE_INTEGER t;

    s.wYear = 1970;
    s.wMonth = 1;
    s.wDay = 1;
    s.wHour = 0;
    s.wMinute = 0;
    s.wSecond = 0;
    s.wMilliseconds = 0;
    SystemTimeToFileTime(&s, &f);
    t.QuadPart = f.dwHighDateTime;
    t.QuadPart <<= 32;
    t.QuadPart |= f.dwLowDateTime;
    return (t);
}

int
clock_gettime(int X, struct timeval *tv)
{
    LARGE_INTEGER           t;
    FILETIME            f;
    double                  microseconds;
    static LARGE_INTEGER    offset;
    static double           frequencyToMicroseconds;
    static int              initialized = 0;
    static BOOL             usePerformanceCounter = 0;

    if (!initialized) {
        LARGE_INTEGER performanceFrequency;
        initialized = 1;
        usePerformanceCounter = QueryPerformanceFrequency(&performanceFrequency);
        if (usePerformanceCounter) {
            QueryPerformanceCounter(&offset);
            frequencyToMicroseconds = (double)performanceFrequency.QuadPart / 1000000.;
        } else {
            offset = getFILETIMEoffset();
            frequencyToMicroseconds = 10.;
        }
    }
    if (usePerformanceCounter) QueryPerformanceCounter(&t);
    else {
        GetSystemTimeAsFileTime(&f);
        t.QuadPart = f.dwHighDateTime;
        t.QuadPart <<= 32;
        t.QuadPart |= f.dwLowDateTime;
    }

    t.QuadPart -= offset.QuadPart;
    microseconds = (double)t.QuadPart / frequencyToMicroseconds;
    t.QuadPart = microseconds;
    tv->tv_sec = t.QuadPart / 1000000;
    tv->tv_usec = t.QuadPart % 1000000;
    return (0);
}
35
Carl Staelin

PerformanceCounterの混乱を回避する、単純なコード:

struct timespec { long tv_sec; long tv_nsec; };    //header part
int clock_gettime(int, struct timespec *spec)      //C-file part
{  __int64 wintime; GetSystemTimeAsFileTime((FILETIME*)&wintime);
   wintime      -=116444736000000000i64;  //1jan1601 to 1jan1970
   spec->tv_sec  =wintime / 10000000i64;           //seconds
   spec->tv_nsec =wintime % 10000000i64 *100;      //nano-seconds
   return 0;
}

...高速で信頼性が高く、正確な100ns精度(1ms/10000)の正確な移植ソリューションです。

また、精度が(一部のハードウェアでは)おそらくさらに向上するQPCベースのソリューションは次のとおりです。

struct timespec { long tv_sec; long tv_nsec; };   //header part
#define exp7           10000000i64     //1E+7     //C-file part
#define exp9         1000000000i64     //1E+9
#define w2ux 116444736000000000i64     //1.jan1601 to 1.jan1970
void unix_time(struct timespec *spec)
{  __int64 wintime; GetSystemTimeAsFileTime((FILETIME*)&wintime); 
   wintime -=w2ux;  spec->tv_sec  =wintime / exp7;                 
                    spec->tv_nsec =wintime % exp7 *100;
}
int clock_gettime(int, timespec *spec)
{  static  struct timespec startspec; static double ticks2nano;
   static __int64 startticks, tps =0;    __int64 tmp, curticks;
   QueryPerformanceFrequency((LARGE_INTEGER*)&tmp); //some strange system can
   if (tps !=tmp) { tps =tmp; //init ~~ONCE         //possibly change freq ?
                    QueryPerformanceCounter((LARGE_INTEGER*)&startticks);
                    unix_time(&startspec); ticks2nano =(double)exp9 / tps; }
   QueryPerformanceCounter((LARGE_INTEGER*)&curticks); curticks -=startticks;
   spec->tv_sec  =startspec.tv_sec   +         (curticks / tps);
   spec->tv_nsec =startspec.tv_nsec  + (double)(curticks % tps) * ticks2nano;
         if (!(spec->tv_nsec < exp9)) { spec->tv_sec++; spec->tv_nsec -=exp9; }
   return 0;
}
11
Asain Kujovic

clock_gettime()を使用したQueryPerformanceCounter()のマイ改良バージョン。

_#define BILLION                             (1E9)

static BOOL g_first_time = 1;
static LARGE_INTEGER g_counts_per_sec;

int clock_gettime(int dummy, struct timespec *ct)
{
    LARGE_INTEGER count;

    if (g_first_time)
    {
        g_first_time = 0;

        if (0 == QueryPerformanceFrequency(&g_counts_per_sec))
        {
            g_counts_per_sec.QuadPart = 0;
        }
    }

    if ((NULL == ct) || (g_counts_per_sec.QuadPart <= 0) ||
            (0 == QueryPerformanceCounter(&count)))
    {
        return -1;
    }

    ct->tv_sec = count.QuadPart / g_counts_per_sec.QuadPart;
    ct->tv_nsec = ((count.QuadPart % g_counts_per_sec.QuadPart) * BILLION) / g_counts_per_sec.QuadPart;

    return 0;
}
_

私のバージョンは、現在受け入れられているQueryPerformanceCounter()を使用した回答よりも優れていると思います。

  1. より堅牢-関数の戻り値と参照渡し変数で返される値もチェックします。
  2. より堅牢-入力パラメータの有効性をチェックします。
  3. より合理化-必要な数の変数を使用します(3対7)。
  4. より合理化- QueryPerformanceFrequency() および QueryPerformanceCounter() が機能することが保証されているため、GetSystemTimeAsFileTime()を含むコードパスを回避しますWindowsを実行するシステムXP以降
2
work.bin

単調でリアルタイムが必要でした。

単調の場合、壁時計のベースラインは無意味なので、perfカウンターを使用します。

#define MS_PER_SEC      1000ULL     // MS = milliseconds
#define US_PER_MS       1000ULL     // US = microseconds
#define HNS_PER_US      10ULL       // HNS = hundred-nanoseconds (e.g., 1 hns = 100 ns)
#define NS_PER_US       1000ULL

#define HNS_PER_SEC     (MS_PER_SEC * US_PER_MS * HNS_PER_US)
#define NS_PER_HNS      (100ULL)    // NS = nanoseconds
#define NS_PER_SEC      (MS_PER_SEC * US_PER_MS * NS_PER_US)

int clock_gettime_monotonic(struct timespec *tv)
{
    static LARGE_INTEGER ticksPerSec;
    LARGE_INTEGER ticks;
    double seconds;

    if (!ticksPerSec.QuadPart) {
        QueryPerformanceFrequency(&ticksPerSec);
        if (!ticksPerSec.QuadPart) {
            errno = ENOTSUP;
            return -1;
        }
    }

    QueryPerformanceCounter(&ticks);

    seconds = (double) ticks.QuadPart / (double) ticksPerSec.QuadPart;
    tv->tv_sec = (time_t)seconds;
    tv->tv_nsec = (long)((ULONGLONG)(seconds * NS_PER_SEC) % NS_PER_SEC);

    return 0;
}

魅力的な同様の_ftime()関数とは異なり、GMTに基づく壁時計。

int clock_gettime_realtime(struct timespec *tv)
{
    FILETIME ft;
    ULARGE_INTEGER hnsTime;

    GetSystemTimeAsFileTime(&ft);

    hnsTime.LowPart = ft.dwLowDateTime;
    hnsTime.HighPart = ft.dwHighDateTime;

    // To get POSIX Epoch as baseline, subtract the number of hns intervals from Jan 1, 1601 to Jan 1, 1970.
    hnsTime.QuadPart -= (11644473600ULL * HNS_PER_SEC);

    // modulus by hns intervals per second first, then convert to ns, as not to lose resolution
    tv->tv_nsec = (long) ((hnsTime.QuadPart % HNS_PER_SEC) * NS_PER_HNS);
    tv->tv_sec = (long) (hnsTime.QuadPart / HNS_PER_SEC);

    return 0;
}

そして、POSIX互換関数... typedefとマクロのPOSIXヘッダーを参照してください。

int clock_gettime(clockid_t type, struct timespec *tp)
{
    if (type == CLOCK_MONOTONIC)
    {
        return clock_gettime_monotonic(tp);
    }
    else if (type == CLOCK_REALTIME)
    {
        return clock_gettime_realtime(tp);
    }

    errno = ENOTSUP;
    return -1;
}
0
jws

timespec_get を使用して、単純なclock_gettimeを実装できます。
timespec_get 関数はC11以降で使用できます)

int clock_gettime(int, struct timespec *tv)
{
    return timespec_get(tv, TIME_UTC);
}

...しかし、私のtime7は私のwindows7 64bitマシンで約10ミリ秒の解像度を持っています。 :(

これが私のバージョンのclock_gettimeです。

int clock_gettime(int, struct timespec *tv)
{
    static int initialized = 0;
    static LARGE_INTEGER freq, startCount;
    static struct timespec tv_start;
    LARGE_INTEGER curCount;
    time_t sec_part;
    long nsec_part;

    if (!initialized) {
        QueryPerformanceFrequency(&freq);
        QueryPerformanceCounter(&startCount);
        timespec_get(&tv_start, TIME_UTC);
        initialized = 1;
    }

    QueryPerformanceCounter(&curCount);

    curCount.QuadPart -= startCount.QuadPart;
    sec_part = curCount.QuadPart / freq.QuadPart;
    nsec_part = (long)((curCount.QuadPart - (sec_part * freq.QuadPart))
            * 1000000000UL / freq.QuadPart);

    tv->tv_sec = tv_start.tv_sec + sec_part;
    tv->tv_nsec = tv_start.tv_nsec + nsec_part;
    if(tv->tv_nsec >= 1000000000UL) {
        tv->tv_sec += 1;
        tv->tv_nsec -= 1000000000UL;
    }
    return 0;
}
0
Woosung