衝突を検出するためのAABBメソッドを実装することは簡単で安価ですが、より正確にするためにOBBを実装したいので、モデルの初期化を使用して境界ボックスを作成します。これは、8つの境界頂点と中心で構成され、各フレームはすべての頂点を変換します。 Oriented Bounding Boxに適合する変換行列を使用しますが、2つのOBB間の衝突を検出する方法を理解できず、数学ではなくコードの視点でアルゴリズムを説明する簡略化された明確なチュートリアルを見つけることができません。数学者ではありません。
私が持っている場合
struct Box {
glm::vec3 vertices[8];
Box() {
for (int i = 0; i < 8; i++) {
vertices[i] = glm::vec3(0);
}
}
glm::vec3 max;
glm::vec3 min;
glm::vec3 Origin;
void reCompute() {
max = vertices[0];
min = vertices[0];
for (int i = 1; i < 8; i++) {
max.x = max.x > vertices[i].x ? max.x : vertices[i].x;
max.y = max.y > vertices[i].y ? max.y : vertices[i].y;
max.z = max.z > vertices[i].z ? max.z : vertices[i].z;
min.x = min.x < vertices[i].x ? min.x : vertices[i].x;
min.y = min.y < vertices[i].y ? min.y : vertices[i].y;
min.z = min.z < vertices[i].z ? min.z : vertices[i].z;
}
Origin = glm::vec3((max.x + min.x) / 2.0f, (max.y + min.y) / 2.0f, (max.z + min.z) / 2.0f);
}
//AABB intersection
bool intersects(const Box &b) const {
return (min.x < b.max.x) && (max.x > b.min.x) && (min.y < b.max.y) && (max.y > b.min.y) && (min.z < b.max.z) && (max.z > b.min.z) && *this != b;
}
bool operator==(const Box& b) const {
return (max.x == b.max.x && max.y == b.max.y && max.z == b.max.z && min.x == b.min.x && min.y == b.min.y && min.z == b.min.z);
}
bool operator!=(const Box& b) const {
return (max.x != b.max.x) || (max.y != b.max.y) || (max.z != b.max.z) || (min.x != b.min.x) || (min.y != b.min.y) || (min.z != b.min.z);
}
};
モデルの初期化時にボックスを作成します
box.vertices[0] = glm::vec3(meshMinX, meshMinY, meshMinZ);
box.vertices[1] = glm::vec3(meshMaxX, meshMinY, meshMinZ);
box.vertices[2] = glm::vec3(meshMinX, meshMaxY, meshMinZ);
box.vertices[3] = glm::vec3(meshMaxX, meshMaxY, meshMinZ);
box.vertices[4] = glm::vec3(meshMinX, meshMinY, meshMaxZ);
box.vertices[5] = glm::vec3(meshMaxX, meshMinY, meshMaxZ);
box.vertices[6] = glm::vec3(meshMinX, meshMaxY, meshMaxZ);
box.vertices[7] = glm::vec3(meshMaxX, meshMaxY, meshMaxZ);
各フレームは、モデルの変換行列を使用してボックスを再計算します
for (int n = 0; n < 8; n++) {
boxs[j].vertices[n] = glm::vec3(matrix * glm::vec4(box.vertices[n], 1));
}
boxs[j].reCompute();
2つのOBBが衝突するかどうかを知るには、SAT(分離軸定理)を使用します。2つの形状のすべての法線に2つの形状のすべての点を投影する必要があります。次に、2つの形状の投影が各法線で重なっているかどうかを確認し、衝突が発生します。オーバーラップがない法線が少なくとも1つある場合、それらは衝突しません。これで、スカラーを返す別のベクトルにベクトルを正射影するメソッドと、2つの間隔が重なっているかどうかを確認するメソッドが必要になります。
Java:にいくつかのコードがあります
VへのUの直交射影:
/**
* Vec u is projected on Vec v
* @param u 2d point
* @param v 2d axe
* @return the orthogonal projection
*/
public static float orthagonalProjectionOf(Vector2f u, Vector2f v){
float norme_u = u.lenght();
float norme_v = v.lenght();
float dot_u_v = dot(u, v);
float buffer = (dot_u_v/(norme_u*norme_v))*norme_u;
if(Float.isNaN(buffer))return 0;//If the vector u is null, then is orthogonal projection is 0, not a NaN
else return buffer;
}
2つの間隔の重複:
/**
* Get the overlapping of two interval on an axis.
* @param minA
* @param maxA
* @param minB
* @param maxB
* @return true overlapping. false if there is no overlapping
*/
public static boolean isOverlapping(float minA, float maxA, float minB, float maxB) {
float minOverlap = Float.NaN;
float maxOverlap = Float.NaN;
//If B contain in A
if(minA <= minB && minB <= maxA) {
if(Float.isNaN(minOverlap) || minB < minOverlap)minOverlap = minB;
}
if(minA <= maxB && maxB <= maxA) {
if(Float.isNaN(maxOverlap) || maxB > minOverlap)maxOverlap = maxB;
}
//If A contain in B
if(minB <= minA && minA <= maxB) {
if(Float.isNaN(minOverlap) || minA < minOverlap)minOverlap = minA;
}
if(minB <= maxA && maxA <= maxB) {
if(Float.isNaN(maxOverlap) || maxA > minOverlap)maxOverlap = maxA;
}
if(Float.isNaN(minOverlap) || Float.isNaN(maxOverlap))return false; //Pas d'intersection
else return true;//Intersection
}
これで、2つのOBB間の衝突をテストする方法を実行できます。
public boolean OBBwOBB(RigidBody bodyA, RigidBody bodyB) {
Shape shapeA = bodyA.getObb().getShape();
Shape shapeB = bodyB.getObb().getShape();
short overlapCompt = 0;
//We test for each normal the projection of the two shape
//Shape A :
for(int i = 0; i < shapeA.getNbrOfNormals(); i++) {
Vector2f normal = shapeA.getNormal(i, bodyA.getAngle());
boolean overlap = overlapOnThisNormal(bodyA, bodyB, normal);
if(overlap) {
overlapCompt++;
}
}
//Shape B :
for(int i = 0; i < shapeB.getNbrOfNormals(); i++) {
Vector2f normal = shapeB.getNormal(i, bodyB.getAngle());
boolean overlap = overlapOnThisNormal(bodyA, bodyB, normal);
if(overlap){
overlapCompt++;
}
}
//Now we see if there is a collision
short howManyNormals = (short) (shapeA.getNbrOfNormals() + shapeB.getNbrOfNormals());
if(overlapCompt == howManyNormals){//If the number of overlap equal the number of normal in both shape :
return true;
}
else return false;
}
そして、ベクトルに投影された2つの形状の投影の最小値と最大値を取得するためにそれが必要になります。
/**
* Test if the orthogonal projection of two shape on a vector overlap.
* @param bodyA
* @param bodyB
* @param normal
* @return null if no overlap, else Vector2f(minOverlaping, maxOverlaping).
*/
public static boolean overlapOnThisNormal(RigidBody bodyA, RigidBody bodyB, Vector2f normal) {
Shape shapeA = bodyA.getObb().getShape();
Shape shapeB = bodyB.getObb().getShape();
//We test each vertex of A
float minA = Float.NaN;
float maxA = Float.NaN;
for(short j = 0; j < shapeA.getNbrOfPoint(); j++){
Vector2f vertex = shapeA.getVertex(j, bodyA.getScale().x, bodyA.getScale().y, bodyA.getPosition().x, bodyA.getPosition().y, bodyA.getAngle());
float bufferA = Vector2f.orthagonalProjectionOf(vertex, normal);
if(Float.isNaN(minA) || bufferA < minA)minA = bufferA;//Set min interval
if(Float.isNaN(maxA) || bufferA > maxA)maxA = bufferA;//Set max interval
}
//We test each vertex of B
float minB = Float.NaN;
float maxB = Float.NaN;
for(short j = 0; j < shapeB.getNbrOfPoint(); j++){
Vector2f vertex = shapeB.getVertex(j, bodyB.getScale().x, bodyB.getScale().y, bodyB.getPosition().x, bodyB.getPosition().y, bodyB.getAngle());
float bufferB = Vector2f.orthagonalProjectionOf(vertex, normal);
if(Float.isNaN(minB) || bufferB < minB)minB = bufferB;//Set min interval
if(Float.isNaN(maxB) || bufferB > maxB)maxB = bufferB;//Set max interval
}
//We test if there overlap
boolean overlap = isOverlapping(minA, maxA, minB, maxB);
return overlap;
}
これがお役に立てば幸いです;)
2つの3DOBB間の単純な衝突検出のための分離軸定理のC++コード実装は次のようになります。
#include <iostream>
// define the operations to be used in our 3D vertices
struct vec3
{
float x, y, z;
vec3 operator- (const vec3 & rhs) const { return{ x - rhs.x, y - rhs.y, z - rhs.z }; }
float operator* (const vec3 & rhs) const { return{ x * rhs.x + y * rhs.y + z * rhs.z }; } // DOT PRODUCT
vec3 operator^ (const vec3 & rhs) const { return{ y * rhs.z - z * rhs.y, z * rhs.x - x * rhs.z, x * rhs.y - y * rhs.x }; } // CROSS PRODUCT
vec3 operator* (const float& rhs)const { return vec3{ x * rhs, y * rhs, z * rhs }; }
};
// set the relevant elements of our oriented bounding box
struct OBB
{
vec3 Pos, AxisX, AxisY, AxisZ, Half_size;
};
// check if there's a separating plane in between the selected axes
bool getSeparatingPlane(const vec3& RPos, const vec3& Plane, const OBB& box1, const OBB&box2)
{
return (fabs(RPos*Plane) >
(fabs((box1.AxisX*box1.Half_size.x)*Plane) +
fabs((box1.AxisY*box1.Half_size.y)*Plane) +
fabs((box1.AxisZ*box1.Half_size.z)*Plane) +
fabs((box2.AxisX*box2.Half_size.x)*Plane) +
fabs((box2.AxisY*box2.Half_size.y)*Plane) +
fabs((box2.AxisZ*box2.Half_size.z)*Plane)));
}
// test for separating planes in all 15 axes
bool getCollision(const OBB& box1, const OBB&box2)
{
static vec3 RPos;
RPos = box2.Pos - box1.Pos;
return !(getSeparatingPlane(RPos, box1.AxisX, box1, box2) ||
getSeparatingPlane(RPos, box1.AxisY, box1, box2) ||
getSeparatingPlane(RPos, box1.AxisZ, box1, box2) ||
getSeparatingPlane(RPos, box2.AxisX, box1, box2) ||
getSeparatingPlane(RPos, box2.AxisY, box1, box2) ||
getSeparatingPlane(RPos, box2.AxisZ, box1, box2) ||
getSeparatingPlane(RPos, box1.AxisX^box2.AxisX, box1, box2) ||
getSeparatingPlane(RPos, box1.AxisX^box2.AxisY, box1, box2) ||
getSeparatingPlane(RPos, box1.AxisX^box2.AxisZ, box1, box2) ||
getSeparatingPlane(RPos, box1.AxisY^box2.AxisX, box1, box2) ||
getSeparatingPlane(RPos, box1.AxisY^box2.AxisY, box1, box2) ||
getSeparatingPlane(RPos, box1.AxisY^box2.AxisZ, box1, box2) ||
getSeparatingPlane(RPos, box1.AxisZ^box2.AxisX, box1, box2) ||
getSeparatingPlane(RPos, box1.AxisZ^box2.AxisY, box1, box2) ||
getSeparatingPlane(RPos, box1.AxisZ^box2.AxisZ, box1, box2));
}
// a quick test to see the code working
int _tmain(int argc, _TCHAR* argv[])
{
// create two obbs
OBB A, B;
// set the first obb's properties
A.Pos = { 0.f, 0.f, 0.f }; // set its center position
// set the half size
A.Half_size.x = 10.f;
A.Half_size.y = 1.f;
A.Half_size.z = 1.f;
// set the axes orientation
A.AxisX = { 1.f, 0.f, 0.f };
A.AxisY = { 0.f, 1.f, 0.f };
A.AxisZ = { 0.f, 0.f, 1.f };
// set the second obb's properties
B.Pos = { 20.f, 0.f, 0.f }; // set its center position
// set the half size
B.Half_size.x = 10.f;
B.Half_size.y = 1.f;
B.Half_size.z = 1.f;
// set the axes orientation
B.AxisX = { 1.f, 0.f, 0.f };
B.AxisY = { 0.f, 1.f, 0.f };
B.AxisZ = { 0.f, 0.f, 1.f };
// run the code and get the result as a message
if (getCollision(A, B)) std::cout << "Collision!!!" << std::endl;
else std::cout << "No collision." << std::endl;
// pause and quit
std::cout << std::endl;
system("pause");
return 0;
}