web-dev-qa-db-ja.com

4x4マトリックスの反転

4x4マトリックスを反転する方法のサンプルコード実装を探しています。私はガウスの消去、LU分解などがあることを知っていますが、それらを詳細に見る代わりに、これを行うためのコードを本当に探しています。

言語は理想的にはC++であり、データはcloumn-major順で16個のfloatの配列で利用可能です。

ありがとうございました!

74
clamp

ここに:

bool gluInvertMatrix(const double m[16], double invOut[16])
{
    double inv[16], det;
    int i;

    inv[0] = m[5]  * m[10] * m[15] - 
             m[5]  * m[11] * m[14] - 
             m[9]  * m[6]  * m[15] + 
             m[9]  * m[7]  * m[14] +
             m[13] * m[6]  * m[11] - 
             m[13] * m[7]  * m[10];

    inv[4] = -m[4]  * m[10] * m[15] + 
              m[4]  * m[11] * m[14] + 
              m[8]  * m[6]  * m[15] - 
              m[8]  * m[7]  * m[14] - 
              m[12] * m[6]  * m[11] + 
              m[12] * m[7]  * m[10];

    inv[8] = m[4]  * m[9] * m[15] - 
             m[4]  * m[11] * m[13] - 
             m[8]  * m[5] * m[15] + 
             m[8]  * m[7] * m[13] + 
             m[12] * m[5] * m[11] - 
             m[12] * m[7] * m[9];

    inv[12] = -m[4]  * m[9] * m[14] + 
               m[4]  * m[10] * m[13] +
               m[8]  * m[5] * m[14] - 
               m[8]  * m[6] * m[13] - 
               m[12] * m[5] * m[10] + 
               m[12] * m[6] * m[9];

    inv[1] = -m[1]  * m[10] * m[15] + 
              m[1]  * m[11] * m[14] + 
              m[9]  * m[2] * m[15] - 
              m[9]  * m[3] * m[14] - 
              m[13] * m[2] * m[11] + 
              m[13] * m[3] * m[10];

    inv[5] = m[0]  * m[10] * m[15] - 
             m[0]  * m[11] * m[14] - 
             m[8]  * m[2] * m[15] + 
             m[8]  * m[3] * m[14] + 
             m[12] * m[2] * m[11] - 
             m[12] * m[3] * m[10];

    inv[9] = -m[0]  * m[9] * m[15] + 
              m[0]  * m[11] * m[13] + 
              m[8]  * m[1] * m[15] - 
              m[8]  * m[3] * m[13] - 
              m[12] * m[1] * m[11] + 
              m[12] * m[3] * m[9];

    inv[13] = m[0]  * m[9] * m[14] - 
              m[0]  * m[10] * m[13] - 
              m[8]  * m[1] * m[14] + 
              m[8]  * m[2] * m[13] + 
              m[12] * m[1] * m[10] - 
              m[12] * m[2] * m[9];

    inv[2] = m[1]  * m[6] * m[15] - 
             m[1]  * m[7] * m[14] - 
             m[5]  * m[2] * m[15] + 
             m[5]  * m[3] * m[14] + 
             m[13] * m[2] * m[7] - 
             m[13] * m[3] * m[6];

    inv[6] = -m[0]  * m[6] * m[15] + 
              m[0]  * m[7] * m[14] + 
              m[4]  * m[2] * m[15] - 
              m[4]  * m[3] * m[14] - 
              m[12] * m[2] * m[7] + 
              m[12] * m[3] * m[6];

    inv[10] = m[0]  * m[5] * m[15] - 
              m[0]  * m[7] * m[13] - 
              m[4]  * m[1] * m[15] + 
              m[4]  * m[3] * m[13] + 
              m[12] * m[1] * m[7] - 
              m[12] * m[3] * m[5];

    inv[14] = -m[0]  * m[5] * m[14] + 
               m[0]  * m[6] * m[13] + 
               m[4]  * m[1] * m[14] - 
               m[4]  * m[2] * m[13] - 
               m[12] * m[1] * m[6] + 
               m[12] * m[2] * m[5];

    inv[3] = -m[1] * m[6] * m[11] + 
              m[1] * m[7] * m[10] + 
              m[5] * m[2] * m[11] - 
              m[5] * m[3] * m[10] - 
              m[9] * m[2] * m[7] + 
              m[9] * m[3] * m[6];

    inv[7] = m[0] * m[6] * m[11] - 
             m[0] * m[7] * m[10] - 
             m[4] * m[2] * m[11] + 
             m[4] * m[3] * m[10] + 
             m[8] * m[2] * m[7] - 
             m[8] * m[3] * m[6];

    inv[11] = -m[0] * m[5] * m[11] + 
               m[0] * m[7] * m[9] + 
               m[4] * m[1] * m[11] - 
               m[4] * m[3] * m[9] - 
               m[8] * m[1] * m[7] + 
               m[8] * m[3] * m[5];

    inv[15] = m[0] * m[5] * m[10] - 
              m[0] * m[6] * m[9] - 
              m[4] * m[1] * m[10] + 
              m[4] * m[2] * m[9] + 
              m[8] * m[1] * m[6] - 
              m[8] * m[2] * m[5];

    det = m[0] * inv[0] + m[1] * inv[4] + m[2] * inv[8] + m[3] * inv[12];

    if (det == 0)
        return false;

    det = 1.0 / det;

    for (i = 0; i < 16; i++)
        invOut[i] = inv[i] * det;

    return true;
}

これは [〜#〜] mesa [〜#〜] GLUライブラリの実装から解除されました。

91
shoosh

よりコストの高いコードと「読みやすい」を探している人がいるなら、

var A2323 = m.m22 * m.m33 - m.m23 * m.m32 ;
var A1323 = m.m21 * m.m33 - m.m23 * m.m31 ;
var A1223 = m.m21 * m.m32 - m.m22 * m.m31 ;
var A0323 = m.m20 * m.m33 - m.m23 * m.m30 ;
var A0223 = m.m20 * m.m32 - m.m22 * m.m30 ;
var A0123 = m.m20 * m.m31 - m.m21 * m.m30 ;
var A2313 = m.m12 * m.m33 - m.m13 * m.m32 ;
var A1313 = m.m11 * m.m33 - m.m13 * m.m31 ;
var A1213 = m.m11 * m.m32 - m.m12 * m.m31 ;
var A2312 = m.m12 * m.m23 - m.m13 * m.m22 ;
var A1312 = m.m11 * m.m23 - m.m13 * m.m21 ;
var A1212 = m.m11 * m.m22 - m.m12 * m.m21 ;
var A0313 = m.m10 * m.m33 - m.m13 * m.m30 ;
var A0213 = m.m10 * m.m32 - m.m12 * m.m30 ;
var A0312 = m.m10 * m.m23 - m.m13 * m.m20 ;
var A0212 = m.m10 * m.m22 - m.m12 * m.m20 ;
var A0113 = m.m10 * m.m31 - m.m11 * m.m30 ;
var A0112 = m.m10 * m.m21 - m.m11 * m.m20 ;

var det = m.m00 * ( m.m11 * A2323 - m.m12 * A1323 + m.m13 * A1223 ) 
    - m.m01 * ( m.m10 * A2323 - m.m12 * A0323 + m.m13 * A0223 ) 
    + m.m02 * ( m.m10 * A1323 - m.m11 * A0323 + m.m13 * A0123 ) 
    - m.m03 * ( m.m10 * A1223 - m.m11 * A0223 + m.m12 * A0123 ) ;
det = 1 / det;

return new Matrix4x4() {
   m00 = det *   ( m.m11 * A2323 - m.m12 * A1323 + m.m13 * A1223 ),
   m01 = det * - ( m.m01 * A2323 - m.m02 * A1323 + m.m03 * A1223 ),
   m02 = det *   ( m.m01 * A2313 - m.m02 * A1313 + m.m03 * A1213 ),
   m03 = det * - ( m.m01 * A2312 - m.m02 * A1312 + m.m03 * A1212 ),
   m10 = det * - ( m.m10 * A2323 - m.m12 * A0323 + m.m13 * A0223 ),
   m11 = det *   ( m.m00 * A2323 - m.m02 * A0323 + m.m03 * A0223 ),
   m12 = det * - ( m.m00 * A2313 - m.m02 * A0313 + m.m03 * A0213 ),
   m13 = det *   ( m.m00 * A2312 - m.m02 * A0312 + m.m03 * A0212 ),
   m20 = det *   ( m.m10 * A1323 - m.m11 * A0323 + m.m13 * A0123 ),
   m21 = det * - ( m.m00 * A1323 - m.m01 * A0323 + m.m03 * A0123 ),
   m22 = det *   ( m.m00 * A1313 - m.m01 * A0313 + m.m03 * A0113 ),
   m23 = det * - ( m.m00 * A1312 - m.m01 * A0312 + m.m03 * A0112 ),
   m30 = det * - ( m.m10 * A1223 - m.m11 * A0223 + m.m12 * A0123 ),
   m31 = det *   ( m.m00 * A1223 - m.m01 * A0223 + m.m02 * A0123 ),
   m32 = det * - ( m.m00 * A1213 - m.m01 * A0213 + m.m02 * A0113 ),
   m33 = det *   ( m.m00 * A1212 - m.m01 * A0212 + m.m02 * A0112 ),
};

私はコードを書きませんが、私のプログラムは書きました。 N-matrixの行列式と逆行列を計算する小さなプログラムプログラムを作成するを作成しました。

過去に5x5のマトリックスを逆にするコードが必要だったのですが、地球の誰もこれをやったことがないので、私はそれをしました。

プログラムについて見てみましょう こちら

編集:マトリックスレイアウトは行ごとです(つまりm01は1行2列目にあります)。また、言語はC#ですが、Cに簡単に変換できるはずです。

8
willnode

多くの機能を備えたC++マトリックスライブラリが必要な場合は、Eigenライブラリをご覧ください- http://eigen.tuxfamily.org

6
user69650

MESA実装を「ロールアップ」しました(実際に機能することを確認するために、ユニットテストもいくつか作成しました)。

ここに:

float invf(int i,int j,const float* m){

    int o = 2+(j-i);

    i += 4+o;
    j += 4-o;

    #define e(a,b) m[ ((j+b)%4)*4 + ((i+a)%4) ]

    float inv =
     + e(+1,-1)*e(+0,+0)*e(-1,+1)
     + e(+1,+1)*e(+0,-1)*e(-1,+0)
     + e(-1,-1)*e(+1,+0)*e(+0,+1)
     - e(-1,-1)*e(+0,+0)*e(+1,+1)
     - e(-1,+1)*e(+0,-1)*e(+1,+0)
     - e(+1,-1)*e(-1,+0)*e(+0,+1);

    return (o%2)?inv : -inv;

    #undef e

}

bool inverseMatrix4x4(const float *m, float *out)
{

    float inv[16];

    for(int i=0;i<4;i++)
        for(int j=0;j<4;j++)
            inv[j*4+i] = invf(i,j,m);

    double D = 0;

    for(int k=0;k<4;k++) D += m[k] * inv[k*4];

    if (D == 0) return false;

    D = 1.0 / D;

    for (int i = 0; i < 16; i++)
        out[i] = inv[i] * D;

    return true;

}

これについて少し書いて、ポジティブ/ネガティブ要因のパターンを表示します 私のブログで

@LiraNunaが示唆しているように、多くのプラットフォームでこのようなルーチンのハードウェアアクセラレーションバージョンが利用できるので、読みやすく簡潔な「バックアップバージョン」を用意できてうれしいです。

:これは、MESAの実装より3.5倍遅く、または悪くなる可能性があります。要因のパターンをシフトして追加などを削除することもできますが、読みやすさが失われ、それでも非常に高速ではありません。

5
user234736

GNU Scientific Library を使用するか、その中のコードを調べることができます。

編集: 線形代数 セクションが必要なようです。

2
Svante

@shooshに触発されてMESAの実装を確認したところ、最近のmesaリリースではマトリックスの反転がかなり異なっていることがわかりました。それらは良い改善だと思います。 Mesa-17.3.9 のマトリックス反転コードは次のとおりです。

/* Returns true for success, false for failure (singular matrix) */
bool DirectVolumeRenderer::_mesa_invert_matrix_general( GLfloat out[16], const GLfloat in[16] )
{
    /**
     * References an element of 4x4 matrix.
     * Calculate the linear storage index of the element and references it. 
     */
    #define MAT(m,r,c) (m)[(c)*4+(r)]
    /**
     * Swaps the values of two floating point variables.
     */
    #define SWAP_ROWS(a, b) { GLfloat *_tmp = a; (a)=(b); (b)=_tmp; }

    const GLfloat *m = in;
    GLfloat wtmp[4][8];
    GLfloat m0, m1, m2, m3, s;
    GLfloat *r0, *r1, *r2, *r3;

    r0 = wtmp[0], r1 = wtmp[1], r2 = wtmp[2], r3 = wtmp[3];

    r0[0] = MAT(m,0,0), r0[1] = MAT(m,0,1),
    r0[2] = MAT(m,0,2), r0[3] = MAT(m,0,3),
    r0[4] = 1.0, r0[5] = r0[6] = r0[7] = 0.0,

    r1[0] = MAT(m,1,0), r1[1] = MAT(m,1,1),
    r1[2] = MAT(m,1,2), r1[3] = MAT(m,1,3),
    r1[5] = 1.0, r1[4] = r1[6] = r1[7] = 0.0,

    r2[0] = MAT(m,2,0), r2[1] = MAT(m,2,1),
    r2[2] = MAT(m,2,2), r2[3] = MAT(m,2,3),
    r2[6] = 1.0, r2[4] = r2[5] = r2[7] = 0.0,

    r3[0] = MAT(m,3,0), r3[1] = MAT(m,3,1),
    r3[2] = MAT(m,3,2), r3[3] = MAT(m,3,3),
    r3[7] = 1.0, r3[4] = r3[5] = r3[6] = 0.0;

    /* choose pivot - or die */
    if (fabsf(r3[0])>fabsf(r2[0])) SWAP_ROWS(r3, r2);
    if (fabsf(r2[0])>fabsf(r1[0])) SWAP_ROWS(r2, r1);
    if (fabsf(r1[0])>fabsf(r0[0])) SWAP_ROWS(r1, r0);
    if (0.0F == r0[0])
        return false;

    /* eliminate first variable     */
    m1 = r1[0]/r0[0]; m2 = r2[0]/r0[0]; m3 = r3[0]/r0[0];
    s = r0[1]; r1[1] -= m1 * s; r2[1] -= m2 * s; r3[1] -= m3 * s;
    s = r0[2]; r1[2] -= m1 * s; r2[2] -= m2 * s; r3[2] -= m3 * s;
    s = r0[3]; r1[3] -= m1 * s; r2[3] -= m2 * s; r3[3] -= m3 * s;
    s = r0[4];
    if (s != 0.0F) { r1[4] -= m1 * s; r2[4] -= m2 * s; r3[4] -= m3 * s; }
    s = r0[5];
    if (s != 0.0F) { r1[5] -= m1 * s; r2[5] -= m2 * s; r3[5] -= m3 * s; }
    s = r0[6];
    if (s != 0.0F) { r1[6] -= m1 * s; r2[6] -= m2 * s; r3[6] -= m3 * s; }
    s = r0[7];
    if (s != 0.0F) { r1[7] -= m1 * s; r2[7] -= m2 * s; r3[7] -= m3 * s; }

    /* choose pivot - or die */
    if (fabsf(r3[1])>fabsf(r2[1])) SWAP_ROWS(r3, r2);
    if (fabsf(r2[1])>fabsf(r1[1])) SWAP_ROWS(r2, r1);
    if (0.0F == r1[1])
        return false;

    /* eliminate second variable */
    m2 = r2[1]/r1[1]; m3 = r3[1]/r1[1];
    r2[2] -= m2 * r1[2]; r3[2] -= m3 * r1[2];
    r2[3] -= m2 * r1[3]; r3[3] -= m3 * r1[3];
    s = r1[4]; if (0.0F != s) { r2[4] -= m2 * s; r3[4] -= m3 * s; }
    s = r1[5]; if (0.0F != s) { r2[5] -= m2 * s; r3[5] -= m3 * s; }
    s = r1[6]; if (0.0F != s) { r2[6] -= m2 * s; r3[6] -= m3 * s; }
    s = r1[7]; if (0.0F != s) { r2[7] -= m2 * s; r3[7] -= m3 * s; }

    /* choose pivot - or die */
    if (fabsf(r3[2])>fabsf(r2[2])) SWAP_ROWS(r3, r2);
    if (0.0F == r2[2])
        return false;

    /* eliminate third variable */
    m3 = r3[2]/r2[2];
    r3[3] -= m3 * r2[3], r3[4] -= m3 * r2[4],
    r3[5] -= m3 * r2[5], r3[6] -= m3 * r2[6],
    r3[7] -= m3 * r2[7];

    /* last check */
    if (0.0F == r3[3])
        return false;

    s = 1.0F/r3[3];             /* now back substitute row 3 */
    r3[4] *= s; r3[5] *= s; r3[6] *= s; r3[7] *= s;

    m2 = r2[3];                 /* now back substitute row 2 */
    s  = 1.0F/r2[2];
    r2[4] = s * (r2[4] - r3[4] * m2), r2[5] = s * (r2[5] - r3[5] * m2),
    r2[6] = s * (r2[6] - r3[6] * m2), r2[7] = s * (r2[7] - r3[7] * m2);
    m1 = r1[3];
    r1[4] -= r3[4] * m1, r1[5] -= r3[5] * m1,
    r1[6] -= r3[6] * m1, r1[7] -= r3[7] * m1;
    m0 = r0[3];
    r0[4] -= r3[4] * m0, r0[5] -= r3[5] * m0,
    r0[6] -= r3[6] * m0, r0[7] -= r3[7] * m0;

    m1 = r1[2];                 /* now back substitute row 1 */
    s  = 1.0F/r1[1];
    r1[4] = s * (r1[4] - r2[4] * m1), r1[5] = s * (r1[5] - r2[5] * m1),
    r1[6] = s * (r1[6] - r2[6] * m1), r1[7] = s * (r1[7] - r2[7] * m1);
    m0 = r0[2];
    r0[4] -= r2[4] * m0, r0[5] -= r2[5] * m0,
    r0[6] -= r2[6] * m0, r0[7] -= r2[7] * m0;

    m0 = r0[1];                 /* now back substitute row 0 */
    s  = 1.0F/r0[0];
    r0[4] = s * (r0[4] - r1[4] * m0), r0[5] = s * (r0[5] - r1[5] * m0),
    r0[6] = s * (r0[6] - r1[6] * m0), r0[7] = s * (r0[7] - r1[7] * m0);

    MAT(out,0,0) = r0[4]; MAT(out,0,1) = r0[5],
    MAT(out,0,2) = r0[6]; MAT(out,0,3) = r0[7],
    MAT(out,1,0) = r1[4]; MAT(out,1,1) = r1[5],
    MAT(out,1,2) = r1[6]; MAT(out,1,3) = r1[7],
    MAT(out,2,0) = r2[4]; MAT(out,2,1) = r2[5],
    MAT(out,2,2) = r2[6]; MAT(out,2,3) = r2[7],
    MAT(out,3,0) = r3[4]; MAT(out,3,1) = r3[5],
    MAT(out,3,2) = r3[6]; MAT(out,3,3) = r3[7];

    #undef SWAP_ROWS
    #undef MAT

    return true;
}

注:このコードはmesaコードベースで見つけることができます:mesa-17.3.9/src/mesa/math/m_matrix.c

1
Samuel Li

これは小さな(ヘッダーが1つだけの)C++ vector math library(3Dプログラミング向け)です。あなたがそれを使用する場合、メモリ内の行列のレイアウトはOpenGLが期待するものと比較して反転していることに留意してください、私はそれを理解する楽しい時間を過ごしました...

1
Eugene

これにより blog に従って高速化できます。

#define SUBP(i,j) input[i][j]
#define SUBQ(i,j) input[i][2+j]
#define SUBR(i,j) input[2+i][j]
#define SUBS(i,j) input[2+i][2+j]

#define OUTP(i,j) output[i][j]
#define OUTQ(i,j) output[i][2+j]
#define OUTR(i,j) output[2+i][j]
#define OUTS(i,j) output[2+i][2+j]

#define INVP(i,j) invP[i][j]
#define INVPQ(i,j) invPQ[i][j]
#define RINVP(i,j) RinvP[i][j]
#define INVPQ(i,j) invPQ[i][j]
#define RINVPQ(i,j) RinvPQ[i][j]
#define INVPQR(i,j) invPQR[i][j]
#define INVS(i,j) invS[i][j]

#define MULTI(MAT1, MAT2, MAT3) \
    MAT3(0,0)=MAT1(0,0)*MAT2(0,0) + MAT1(0,1)*MAT2(1,0); \
MAT3(0,1)=MAT1(0,0)*MAT2(0,1) + MAT1(0,1)*MAT2(1,1); \
MAT3(1,0)=MAT1(1,0)*MAT2(0,0) + MAT1(1,1)*MAT2(1,0); \
MAT3(1,1)=MAT1(1,0)*MAT2(0,1) + MAT1(1,1)*MAT2(1,1);

#define INV(MAT1, MAT2) \
    _det = 1.0 / (MAT1(0,0) * MAT1(1,1) - MAT1(0,1) * MAT1(1,0)); \
MAT2(0,0) = MAT1(1,1) * _det; \
MAT2(1,1) = MAT1(0,0) * _det; \
MAT2(0,1) = -MAT1(0,1) * _det; \
MAT2(1,0) = -MAT1(1,0) * _det; \

#define SUBTRACT(MAT1, MAT2, MAT3) \
    MAT3(0,0)=MAT1(0,0) - MAT2(0,0); \
MAT3(0,1)=MAT1(0,1) - MAT2(0,1); \
MAT3(1,0)=MAT1(1,0) - MAT2(1,0); \
MAT3(1,1)=MAT1(1,1) - MAT2(1,1);

#define NEGATIVE(MAT) \
    MAT(0,0)=-MAT(0,0); \
MAT(0,1)=-MAT(0,1); \
MAT(1,0)=-MAT(1,0); \
MAT(1,1)=-MAT(1,1);


void getInvertMatrix(complex<double> input[4][4], complex<double> output[4][4]) {
    complex<double> _det;
    complex<double> invP[2][2];
    complex<double> invPQ[2][2];
    complex<double> RinvP[2][2];
    complex<double> RinvPQ[2][2];
    complex<double> invPQR[2][2];
    complex<double> invS[2][2];


    INV(SUBP, INVP);
    MULTI(SUBR, INVP, RINVP);
    MULTI(INVP, SUBQ, INVPQ);
    MULTI(RINVP, SUBQ, RINVPQ);
    SUBTRACT(SUBS, RINVPQ, INVS);
    INV(INVS, OUTS);
    NEGATIVE(OUTS);
    MULTI(OUTS, RINVP, OUTR);
    MULTI(INVPQ, OUTS, OUTQ);
    MULTI(INVPQ, OUTR, INVPQR);
    SUBTRACT(INVP, INVPQR, OUTP);
}

[〜#〜] p [〜#〜]は可逆ではない可能性があるため、これは完全な実装ではありませんが、このコードをMESA実装と組み合わせることができますより良いパフォーマンスを得るために。

0
Cauchy Schwarz