web-dev-qa-db-ja.com

OpenCVの「オブジェクト検出」のためのHOG機能に基づくSVM分類器

画像内のオブジェクトを検出したいプロジェクトがあります。私の目的は、HOG機能を使用することです。 OpenCV SVM実装を使用することで、人を検出するためのコードを見つけることができました。また、人ではなくオブジェクトを検出するためにパラメーターを調整する方法についていくつかの論文を読みました。残念ながら、いくつかの理由でそれを行うことができませんでした。まず第一に、私はおそらくパラメーターを正しく調整していません、第二に、私はC++の優れたプログラマーではありませんが、C++/OpenCVでそれを行わなければなりません... here コードを見つけることができますC++/OpenCVを使用して人のHOG機能を検出するため。

この image でオブジェクトを検出したいとします。ここで、コードで変更しようとしたことをお見せしますが、うまくいきませんでした。

私が変更しようとしたコード:

_HOGDescriptor hog;
hog.setSVMDetector(HOGDescriptor::getDefaultPeopleDetector());
_

次のパラメータを使用してgetDefaultPeopleDetector()を変更しようとしましたが、機能しませんでした:

_(Size(64, 128), Size(16, 16), Size(8, 8), Size(8, 8), 9, 0,-1, 0, 0.2, true, cv::HOGDescriptor::DEFAULT_NLEVELS)
_

その後、ベクターを作ってみましたが、結果を印刷したいのですが、空っぽのようです。

_vector<float> detector;

HOGDescriptor hog(Size(64, 128), Size(16, 16), Size(8, 8), Size(8, 8), 9, 0,-1, 0, 0.2, true, cv::HOGDescriptor::DEFAULT_NLEVELS);

hog.setSVMDetector(detector);
_

この問題を解決するために助けが必要です。

21
Mario

Opencv HOG記述子とSVM分類子を使用して任意のオブジェクトを検出するには、まず分類子をトレーニングする必要があります。パラメータをいじってみてもここでは役に立ちません。申し訳ありませんが:(。

大まかに言うと、次の手順を完了する必要があります。

ステップ1)検出するオブジェクト(ポジティブサンプル)のトレーニング画像を準備します。また、関心のあるオブジェクト(ネガティブサンプル)がないいくつかの画像を準備する必要があります。

ステップ2)トレーニングサンプルのHOG機能を検出し、この機能を使用してSVM分類器(OpenCVでも提供)をトレーニングします。

ステップ3) HOGDescriptor :: setSVMDetector()メソッドでトレーニング済みのSVM分類器の係数を使用します。

その後、peopledetector.cppサンプルコードを使用して、検出するオブジェクトを検出できます。

36
Hakan Serce

私は同じ問題を扱ってきましたが、私が作成したいくつかのクリーンなC++ソリューションの欠如に驚いています〜>このSVMLightのラッパー<〜、これはクラスSVMTrainerSVMClassifierを提供する静的ライブラリで、トレーニングを次のように簡素化します。

// we are going to use HOG to obtain feature vectors:
HOGDescriptor hog;
hog.winSize = Size(32,48);

// and feed SVM with them:
SVMLight::SVMTrainer svm("features.dat");

次に、トレーニングサンプルごとに:

// obtain feature vector describing sample image:
vector<float> featureVector;
hog.compute(img, featureVector, Size(8, 8), Size(0, 0));

// and write feature vector to the file:
svm.writeFeatureVectorToFile(featureVector, true);      // true = positive sample

features.datファイルにすべてのサンプルの特徴ベクトルが含まれるまで、最後に呼び出すだけです。

std::string modelName("classifier.dat");
svm.trainAndSaveModel(modelName);

モデル(またはfeatures.datで分類子をトレーニングできるファイル)を作成したら、次のようにします。

SVMLight::SVMClassifier c(classifierModelName);
vector<float> descriptorVector = c.getDescriptorVector();
hog.setSVMDetector(descriptorVector);
...
vector<Rect> found;
Size padding(Size(0, 0));
Size winStride(Size(8, 8));
hog.detectMultiScale(segment, found, 0.0, winStride, padding, 1.01, 0.1);

詳細については HOGDescriptor のドキュメントを確認してください:)

9
LihO

私はあなたと同じようなことをしました:HOGを使用してポジティブイメージとネガティブイメージのサンプルを収集して車の特徴を抽出し、線形SVM(私はSVMライトを使用)を使用して特徴セットをトレーニングしてから、モデルを使用してHOGマルチ検出機能を使用して車を検出します。

多くの誤検出が発生した後、正のサンプルと誤検出+負のサンプルを使用してデータを再トレーニングします。次に、結果のモデルが再度テストされます。結果の検出は向上しますが(誤検知は少なくなります)、結果は満足のいくものではありません(平均50%のヒット率と50%の誤検知)。 multidetectパラメータを調整すると結果は改善されますが、それほど改善されません(誤検知が10%減少し、ヒット率が向上します)。

編集必要に応じてソースコードを共有できます。HOGを使用しても満足のいく結果が得られなかったため、議論の余地があります。とにかく、コードはトレーニングと検出にHOGを使用する際の良い出発点になると思います

編集:コードの追加

static void calculateFeaturesFromInput(const string& imageFilename, vector<float>& featureVector, HOGDescriptor& hog) 
{
    Mat imageData = imread(imageFilename, 1);
    if (imageData.empty()) {
        featureVector.clear();
        printf("Error: HOG image '%s' is empty, features calculation skipped!\n", imageFilename.c_str());
        return;
    }
    // Check for mismatching dimensions
    if (imageData.cols != hog.winSize.width || imageData.rows != hog.winSize.height) {
       featureVector.clear();
       printf("Error: Image '%s' dimensions (%u x %u) do not match HOG window size (%u x %u)!\n", imageFilename.c_str(), imageData.cols, imageData.rows, hog.winSize.width, hog.winSize.height);
        return;
    }
    vector<Point> locations;
    hog.compute(imageData, featureVector, winStride, trainingPadding, locations);
    imageData.release(); // Release the image again after features are extracted
}

...

int main(int argc, char** argv) {

    // <editor-fold defaultstate="collapsed" desc="Init">
    HOGDescriptor hog; // Use standard parameters here
    hog.winSize.height = 128;
    hog.winSize.width = 64;

    // Get the files to train from somewhere
    static vector<string> tesImages;
    static vector<string> positiveTrainingImages;
    static vector<string> negativeTrainingImages;
    static vector<string> validExtensions;
    validExtensions.Push_back("jpg");
    validExtensions.Push_back("png");
    validExtensions.Push_back("ppm");
    validExtensions.Push_back("pgm");
    // </editor-fold>

    // <editor-fold defaultstate="collapsed" desc="Read image files">
    getFilesInDirectory(posSamplesDir, positiveTrainingImages, validExtensions);
    getFilesInDirectory(negSamplesDir, negativeTrainingImages, validExtensions);
    /// Retrieve the descriptor vectors from the samples
    unsigned long overallSamples = positiveTrainingImages.size() + negativeTrainingImages.size();
    // </editor-fold>

    // <editor-fold defaultstate="collapsed" desc="Calculate HOG features and save to file">
    // Make sure there are actually samples to train
    if (overallSamples == 0) {
        printf("No training sample files found, nothing to do!\n");
        return EXIT_SUCCESS;
    }

    /// @WARNING: This is really important, some libraries (e.g. ROS) seems to set the system locale which takes decimal commata instead of points which causes the file input parsing to fail
    setlocale(LC_ALL, "C"); // Do not use the system locale
    setlocale(LC_NUMERIC,"C");
    setlocale(LC_ALL, "POSIX");

    printf("Reading files, generating HOG features and save them to file '%s':\n", featuresFile.c_str());
    float percent;
    /**
     * Save the calculated descriptor vectors to a file in a format that can be used by SVMlight for training
     * @NOTE: If you split these steps into separate steps: 
     * 1. calculating features into memory (e.g. into a cv::Mat or vector< vector<float> >), 
     * 2. saving features to file / directly inject from memory to machine learning algorithm,
     * the program may consume a considerable amount of main memory
     */ 
    fstream File;
    File.open(featuresFile.c_str(), ios::out);
    if (File.good() && File.is_open()) {
        File << "# Use this file to train, e.g. SVMlight by issuing $ svm_learn -i 1 -a weights.txt " << featuresFile.c_str() << endl; // Remove this line for libsvm which does not support comments
        // Iterate over sample images
        for (unsigned long currentFile = 0; currentFile < overallSamples; ++currentFile) {
            storeCursor();
            vector<float> featureVector;
            // Get positive or negative sample image file path
            const string currentImageFile = (currentFile < positiveTrainingImages.size() ? positiveTrainingImages.at(currentFile) : negativeTrainingImages.at(currentFile - positiveTrainingImages.size()));
            // Output progress
            if ( (currentFile+1) % 10 == 0 || (currentFile+1) == overallSamples ) {
                percent = ((currentFile+1) * 100 / overallSamples);
                printf("%5lu (%3.0f%%):\tFile '%s'", (currentFile+1), percent, currentImageFile.c_str());
                fflush(stdout);
                resetCursor();
            }
            // Calculate feature vector from current image file
            calculateFeaturesFromInput(currentImageFile, featureVector, hog);
            if (!featureVector.empty()) {
                /* Put positive or negative sample class to file, 
                 * true=positive, false=negative, 
                 * and convert positive class to +1 and negative class to -1 for SVMlight
                 */
                File << ((currentFile < positiveTrainingImages.size()) ? "+1" : "-1");
                // Save feature vector components
                for (unsigned int feature = 0; feature < featureVector.size(); ++feature) {
                    File << " " << (feature + 1) << ":" << featureVector.at(feature);
                }
                File << endl;
            }
        }
        printf("\n");
        File.flush();
        File.close();
    } else {
        printf("Error opening file '%s'!\n", featuresFile.c_str());
        return EXIT_FAILURE;
    }
    // </editor-fold>

    // <editor-fold defaultstate="collapsed" desc="Pass features to machine learning algorithm">
    /// Read in and train the calculated feature vectors
    printf("Calling SVMlight\n");
    SVMlight::getInstance()->read_problem(const_cast<char*> (featuresFile.c_str()));
    SVMlight::getInstance()->train(); // Call the core libsvm training procedure
    printf("Training done, saving model file!\n");
    SVMlight::getInstance()->saveModelToFile(svmModelFile);
    // </editor-fold>

    // <editor-fold defaultstate="collapsed" desc="Generate single detecting feature vector from calculated SVM support vectors and SVM model">
    printf("Generating representative single HOG feature vector using svmlight!\n");
    vector<float> descriptorVector;
    vector<unsigned int> descriptorVectorIndices;
    // Generate a single detecting feature vector (v1 | b) from the trained support vectors, for use e.g. with the HOG algorithm
    SVMlight::getInstance()->getSingleDetectingVector(descriptorVector, descriptorVectorIndices);
    // And save the precious to file system
    saveDescriptorVectorToFile(descriptorVector, descriptorVectorIndices, descriptorVectorFile);
    // </editor-fold>

    // <editor-fold defaultstate="collapsed" desc="Test detecting vector">

    cout << "Test Detecting Vector" << endl;
    hog.setSVMDetector(descriptorVector); // Set our custom detecting vector
    cout << "descriptorVector size: " << sizeof(descriptorVector) << endl;

    getFilesInDirectory(tesSamplesDir, tesImages, validExtensions);
    namedWindow("Test Detector", 1);

    for( size_t it = 0; it < tesImages.size(); it++ )
    {
        cout << "Process image " << tesImages[it] << endl;
        Mat image = imread( tesImages[it], 1 );
        detectAndDrawObjects(image, hog);

        for(;;)
        {
            int c = waitKey();
            if( (char)c == 'n')
                break;
            else if( (char)c == '\x1b' )
                exit(0);
        }
    }
    // </editor-fold>
    return EXIT_SUCCESS;
}
7
bonchenko