私にはn
ポイントがあり、k
ポイント(k <= n
)。つまり、それらのポイント領域の合計からそれらの共通領域を差し引いたものです。
] 1
n=4, k=2
。上の図に示すように、面積は各ポイントから原点まで計算され、最終的な面積はB面積とD面積の合計です(交差の面積を1回だけ数えます)。ポイントは支配されていません
ボトムアップの動的プログラミングアルゴリズムを実装しましたが、どこかにエラーがあります。これが最良の結果を出力するコードです:
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
typedef struct point {
double x, y;
} point;
struct point *point_ptr;
int n, k;
point points_array[1201];
point result_points[1201];
void qsort(void *base, size_t nitems, size_t size,
int (*compar)(const void *, const void *));
int cmpfunc(const void *a, const void *b) {
point *order_a = (point *)a;
point *order_b = (point *)b;
if (order_a->x > order_b->x) {
return 1;
}
return -1;
}
double max(double a, double b) {
if (a > b) {
return a;
}
return b;
}
double getSingleArea(point p) {
return p.x * p.y;
}
double getCommonAreaX(point biggest_x, point new_point) {
double new_x;
new_x = new_point.x - biggest_x.x;
return new_x * new_point.y;
}
double algo() {
double T[k][n], value;
int i, j, d;
for (i = 0; i < n; i++) {
T[0][i] = getSingleArea(points_array[i]);
}
for (j = 0; j < k; j++) {
T[j][0] = getSingleArea(points_array[0]);
}
for (i = 1; i < k; i++) {
for (j = 1; j < n; j++) {
for (d = 0; d < j; d++) {
value = getCommonAreaX(points_array[j - 1], points_array[j]);
T[i][j] = max(T[i - 1][j], value + T[i - 1][d]);
}
}
}
return T[k - 1][n - 1];
}
void read_input() {
int i;
fscanf(stdin, "%d %d\n", &n, &k);
for (i = 0; i < n; i++) {
fscanf(stdin, "%lf %lf\n", &points_array[i].x, &points_array[i].y);
}
}
int main() {
read_input();
qsort(points_array, n, sizeof(point), cmpfunc);
printf("%.12lf\n", algo());
return 0;
}
入力:
5 3
0.376508963445 0.437693410334
0.948798695015 0.352125307881
0.176318878234 0.493630156084
0.029394902328 0.951299438575
0.235041868262 0.438197791997
最初の数値はn
に等しく、2番目の数値はk
に等しく、次の行は各ポイントのx
およびy
座標に等しいため、結果は次のようになります。0.381410589193
、
私のものは0.366431740966
。だから私はポイントを逃していますか?
私が言えることから、あなたと私は同じ方法を使用して面積と全体的な概念を計算していますが、私のコードは正しい結果を返しているようです。おそらくそれを検討することはあなたが矛盾を見つけるのを助けることができます。
JavaScriptコード:
function f(pts, k){
// Sort the points by x
pts.sort(([a1, b1], [a2, b2]) => a1 - a2);
const n = pts.length;
let best = 0;
// m[k][j] represents the optimal
// value if the jth point is chosen
// as rightmost for k points
let m = new Array(k + 1);
// Initialise m
for (let i=1; i<=k; i++)
m[i] = new Array(n);
for (let i=0; i<n; i++)
m[1][i] = pts[i][0] * pts[i][1];
// Build the table
for (let i=2; i<=k; i++){
for (let j=i-1; j<n; j++){
m[i][j] = 0;
for (let jj=j-1; jj>=i-2; jj--){
const area = (pts[j][0] - pts[jj][0]) * pts[j][1];
m[i][j] = Math.max(m[i][j], area + m[i-1][jj]);
}
best = Math.max(best, m[i][j]);
}
}
return best;
}
var pts = [
[0.376508963445, 0.437693410334],
[0.948798695015, 0.352125307881],
[0.176318878234, 0.493630156084],
[0.029394902328, 0.951299438575],
[0.235041868262, 0.438197791997]
];
var k = 3;
console.log(f(pts, k));