私はCUDAプログラミングに慣れようとしていて、とても楽しい時間を過ごしています。私は現在、共有メモリの有無にかかわらず、行列の乗算を扱う this pdfを見ています。両方のバージョンの完全なコードは ここ にあります。このコードは、CUDA行列乗算サンプルにあるものとほぼ同じです。非共有メモリバージョンには、ブロックサイズに関係なく、任意のマトリックスサイズで実行する機能がありますが、共有メモリバージョンは、ブロックサイズの倍数であるマトリックスで動作する必要があります(4に設定しました。デフォルトは元々16でした)。 。
PDFの最後に提案されている問題の1つは、共有メモリバージョンがブロックサイズの倍数以外でも機能するように変更することです。これは、非共有バージョンのように、単純なインデックスチェックになると思いました。
int row = blockIdx.y * blockDim.y + threadIdx.y;
int col = blockIdx.x * blockDim.x + threadIdx.x;
if(row > A.height || col > B.width) return;
しかし、これは機能しません。これが完全なコードですが、メインメソッド(少し混乱して申し訳ありません)を除いたものですが、私が多少変更しました:
void MatMul(const Matrix A, const Matrix B, Matrix C) {
// Load A and B to device memory
Matrix d_A;
d_A.width = d_A.stride = A.width;
d_A.height = A.height;
size_t size = A.width * A.height * sizeof(float);
cudaError_t err = cudaMalloc(&d_A.elements, size);
printf("CUDA malloc A: %s\n",cudaGetErrorString(err));
err = cudaMemcpy(d_A.elements, A.elements, size, cudaMemcpyHostToDevice);
printf("Copy A to device: %s\n",cudaGetErrorString(err));
Matrix d_B;
d_B.width = d_B.stride = B.width;
d_B.height = B.height;
size = B.width * B.height * sizeof(float);
err = cudaMalloc(&d_B.elements, size);
printf("CUDA malloc B: %s\n",cudaGetErrorString(err));
err = cudaMemcpy(d_B.elements, B.elements, size, cudaMemcpyHostToDevice);
printf("Copy B to device: %s\n",cudaGetErrorString(err));
Matrix d_C;
d_C.width = d_C.stride = C.width;
d_C.height = C.height;
size = C.width * C.height * sizeof(float);
err = cudaMalloc(&d_C.elements, size);
printf("CUDA malloc C: %s\n",cudaGetErrorString(err));
dim3 dimBlock(BLOCK_SIZE, BLOCK_SIZE);
dim3 dimGrid((B.width + dimBlock.x - 1) / dimBlock.x, (A.height + dimBlock.y-1) / dimBlock.y);
MatMulKernel<<<dimGrid, dimBlock>>>(d_A, d_B, d_C);
err = cudaThreadSynchronize();
printf("Run kernel: %s\n", cudaGetErrorString(err));
// Read C from device memory
err = cudaMemcpy(C.elements, d_C.elements, size, cudaMemcpyDeviceToHost);
printf("Copy C off of device: %s\n",cudaGetErrorString(err));
// Free device memory
cudaFree(d_A.elements);
cudaFree(d_B.elements);
cudaFree(d_C.elements);
}
// Get a matrix element
__device__ float GetElement(const Matrix A, int row, int col) {
return A.elements[row * A.stride + col];
}
// Set a matrix element
__device__ void SetElement(Matrix A, int row, int col, float value) {
A.elements[row * A.stride + col] = value;
}
// Get the BLOCK_SIZExBLOCK_SIZE sub-matrix Asub of A that is
// located col sub-matrices to the right and row sub-matrices down
// from the upper-left corner of A
__device__ Matrix GetSubMatrix(Matrix A, int row, int col) {
Matrix Asub;
Asub.width = BLOCK_SIZE;
Asub.height = BLOCK_SIZE;
Asub.stride = A.stride;
Asub.elements = &A.elements[A.stride * BLOCK_SIZE * row + BLOCK_SIZE * col];
return Asub;
}
// Matrix multiplication kernel called by MatMul()
__global__ void MatMulKernel(Matrix A, Matrix B, Matrix C) {
// Block row and column
int blockRow = blockIdx.y;
int blockCol = blockIdx.x;
int rowTest = blockIdx.y * blockDim.y + threadIdx.y;
int colTest = blockIdx.x * blockDim.x + threadIdx.x;
if (rowTest>A.height || colTest>B.width)
return;
// Each thread block computes one sub-matrix Csub of C
Matrix Csub = GetSubMatrix(C, blockRow, blockCol);
// Each thread computes one element of Csub
// by accumulating results into Cvalue
float Cvalue = 0.0;
// Thread row and column within Csub
int row = threadIdx.y;
int col = threadIdx.x;
// Loop over all the sub-matrices of A and B that are
// required to compute Csub
// Multiply each pair of sub-matrices together
// and accumulate the results
for (int m = 0; m < (BLOCK_SIZE + A.width - 1)/BLOCK_SIZE; ++m) {
// Get sub-matrix Asub of A
Matrix Asub = GetSubMatrix(A, blockRow, m);
// Get sub-matrix Bsub of B
Matrix Bsub = GetSubMatrix(B, m, blockCol);
// Shared memory used to store Asub and Bsub respectively
__shared__ float As[BLOCK_SIZE][BLOCK_SIZE];
__shared__ float Bs[BLOCK_SIZE][BLOCK_SIZE];
// Load Asub and Bsub from device memory to shared memory
// Each thread loads one element of each sub-matrix
As[row][col] = GetElement(Asub, row, col);
Bs[row][col] = GetElement(Bsub, row, col);
// Synchronize to make sure the sub-matrices are loaded
// before starting the computation
__syncthreads();
// Multiply Asub and Bsub together
for (int e = 0; e < BLOCK_SIZE; ++e)
{
Cvalue += As[row][e] * Bs[e][col];
}
// Synchronize to make sure that the preceding
// computation is done before loading two new
// sub-matrices of A and B in the next iteration
__syncthreads();
}
// Write Csub to device memory
// Each thread writes one element
SetElement(Csub, row, col, Cvalue);
}
私が変更した注目すべき点:現在のスレッドが存在しないCのスポットで動作しようとしているかどうかをチェックするチェックをMatMulKernelに追加しました。これはうまくいかないようです。結果は変更されますが、変更には後のパターン(x値またはy値が高い)以外のパターンはないようです。エントリの影響が大きくなるようです(整数以外の結果が多く得られます)。また、MatMulKernelで指定されたdimGrid計算方法とmのループ条件を変更しました(幅または高さをブロックサイズで割る前は、間違っているように見えました)。
このガイドで見つけたソリューションガイドでさえ、単純なインデックスチェックである必要があることを示唆しているようです。そのため、本当に基本的なものが欠けていると思います。
マトリックスの寸法がタイルの寸法の倍数でない場合、一部のタイルがマトリックスを部分的にしかカバーしていない可能性があります。完全に重なっていないタイルの外側にあるタイル要素は、適切にゼロ調整する必要があります。したがって、コードを任意のサイズの行列に拡張するのは簡単ですが、単純なインデックスチェックでは不十分です。以下では、任意のサイズの行列を使用して、タイル化された行列-行列乗算カーネルのバージョンをコピーして貼り付けています。
__global__ void MatMul(float* A, float* B, float* C, int ARows, int ACols, int BRows,
int BCols, int CRows, int CCols)
{
float CValue = 0;
int Row = blockIdx.y*TILE_DIM + threadIdx.y;
int Col = blockIdx.x*TILE_DIM + threadIdx.x;
__shared__ float As[TILE_DIM][TILE_DIM];
__shared__ float Bs[TILE_DIM][TILE_DIM];
for (int k = 0; k < (TILE_DIM + ACols - 1)/TILE_DIM; k++) {
if (k*TILE_DIM + threadIdx.x < ACols && Row < ARows)
As[threadIdx.y][threadIdx.x] = A[Row*ACols + k*TILE_DIM + threadIdx.x];
else
As[threadIdx.y][threadIdx.x] = 0.0;
if (k*TILE_DIM + threadIdx.y < BRows && Col < BCols)
Bs[threadIdx.y][threadIdx.x] = B[(k*TILE_DIM + threadIdx.y)*BCols + Col];
else
Bs[threadIdx.y][threadIdx.x] = 0.0;
__syncthreads();
for (int n = 0; n < TILE_DIM; ++n)
CValue += As[threadIdx.y][n] * Bs[n][threadIdx.x];
__syncthreads();
}
if (Row < CRows && Col < CCols)
C[((blockIdx.y * blockDim.y + threadIdx.y)*CCols) +
(blockIdx.x * blockDim.x)+ threadIdx.x] = CValue;
}