web-dev-qa-db-ja.com

Linuxで高パフォーマンスタイマーを作成してプログラムのパフォーマンスを測定する方法

GPUとCPUのパフォーマンスを比較しようとしています。 NVIDIA GPUの場合、cudaEvent_tを入力して、非常に正確なタイミングを取得します。

CPUには、次のコードを使用しています。

// Timers
clock_t start, stop;
float elapsedTime = 0;

// Capture the start time

start = clock();

// Do something here
.......

// Capture the stop time
stop = clock();
// Retrieve time elapsed in milliseconds
elapsedTime = (float)(stop - start) / (float)CLOCKS_PER_SEC * 1000.0f;

どうやら、そのコードは数秒で数えている場合にのみ有効です。また、結果は時々非常に奇妙になります。

Linuxで高解像度タイマーを作成する方法を知っている人はいますか?

32
sj755

clock_gettime を確認してください。これは、高解像度タイマーへのPOSIXインターフェイスです。

マンページを読んで、CLOCK_REALTIMECLOCK_MONOTONICの違いについて疑問に思っている場合は、 CLOCK_REALTIMEとCLOCK_MONOTONICの違い? を参照してください。

完全な例については、次のページを参照してください。 http://www.guyrutenberg.com/2007/09/22/profiling-code-using-clock_gettime/

#include <iostream>
#include <time.h>
using namespace std;

timespec diff(timespec start, timespec end);

int main()
{
    timespec time1, time2;
    int temp;
    clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &time1);
    for (int i = 0; i< 242000000; i++)
        temp+=temp;
    clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &time2);
    cout<<diff(time1,time2).tv_sec<<":"<<diff(time1,time2).tv_nsec<<endl;
    return 0;
}

timespec diff(timespec start, timespec end)
{
    timespec temp;
    if ((end.tv_nsec-start.tv_nsec)<0) {
        temp.tv_sec = end.tv_sec-start.tv_sec-1;
        temp.tv_nsec = 1000000000+end.tv_nsec-start.tv_nsec;
    } else {
        temp.tv_sec = end.tv_sec-start.tv_sec;
        temp.tv_nsec = end.tv_nsec-start.tv_nsec;
    }
    return temp;
}
44
NPE

これまでに提示された情報を要約すると、これらは一般的なアプリケーションに必要な2つの機能です。

#include <time.h>

// call this function to start a nanosecond-resolution timer
struct timespec timer_start(){
    struct timespec start_time;
    clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &start_time);
    return start_time;
}

// call this function to end a timer, returning nanoseconds elapsed as a long
long timer_end(struct timespec start_time){
    struct timespec end_time;
    clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &end_time);
    long diffInNanos = (end_time.tv_sec - start_time.tv_sec) * (long)1e9 + (end_time.tv_nsec - start_time.tv_nsec);
    return diffInNanos;
}

以下に、入力リストの分散を計算するのにかかる時間を計る方法の例を示します。

struct timespec vartime = timer_start();  // begin a timer called 'vartime'
double variance = var(input, MAXLEN);  // perform the task we want to time
long time_elapsed_nanos = timer_end(vartime);
printf("Variance = %f, Time taken (nanoseconds): %ld\n", variance, time_elapsed_nanos);
18
Alex
struct timespec t;
clock_gettime(CLOCK_REALTIME, &t);

cLOCK_REALTIME_HRもありますが、違いがあるかどうかはわかりません。

1
Karoly Horvath

このスレッドを読んだ後、c ++ 11のクロノに対するclock_gettimeのコードのテストを開始しましたが、一致していないようです。

それらの間には大きなギャップがあります!

std :: chrono :: seconds(1)clock_gettime〜30,0と同等のようです

#include <ctime>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <thread>
#include <chrono>
#include <iomanip>
#include <vector>

timespec diff(timespec start, timespec end);
timespec get_cpu_now_time();
std::vector<timespec> get_start_end_pairs();
void output_deltas(const std::vector<timespec> &start_end_pairs);

//=============================================================
int main()
{
    std::cout << "Hello waiter" << std::endl; // flush is intentional
    std::vector<timespec> start_end_pairs = get_start_end_pairs();
    output_deltas(start_end_pairs);

    return EXIT_SUCCESS;
}

//=============================================================
std::vector<timespec> get_start_end_pairs()
{
    std::vector<timespec> start_end_pairs;
    for (int i = 0; i < 20; ++i)
    {
        start_end_pairs.Push_back(get_cpu_now_time());
        std::this_thread::sleep_for(std::chrono::seconds(1));
        start_end_pairs.Push_back(get_cpu_now_time());
    }

    return start_end_pairs;
}

//=============================================================
void output_deltas(const std::vector<timespec> &start_end_pairs)
{
    for (auto it_start = start_end_pairs.begin(); it_start != start_end_pairs.end(); it_start += 2)
    {
        auto it_end = it_start + 1;
        auto delta = diff(*it_start, *it_end);

        std::cout
            << "Waited ("
            << delta.tv_sec
            << "\ts\t"
            << std::setw(9)
            << std::setfill('0')
            << delta.tv_nsec
            << "\tns)"
            << std::endl;
    }
}

//=============================================================
timespec diff(timespec start, timespec end)
{
    timespec temp;
        temp.tv_sec = end.tv_sec-start.tv_sec;
        temp.tv_nsec = end.tv_nsec-start.tv_nsec;

        if (temp.tv_nsec < 0) {
        ++temp.tv_sec;
        temp.tv_nsec += 1000000000;
    }
    return temp;
}

//=============================================================
timespec get_cpu_now_time()
{
    timespec now_time;
    memset(&now_time, 0, sizeof(timespec));
    clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &now_time);

    return now_time;
}

出力:

Waited (0   s   000064802   ns)
Waited (0   s   000028512   ns)
Waited (0   s   000030664   ns)
Waited (0   s   000041233   ns)
Waited (0   s   000013458   ns)
Waited (0   s   000024068   ns)
Waited (0   s   000027591   ns)
Waited (0   s   000028148   ns)
Waited (0   s   000033783   ns)
Waited (0   s   000022382   ns)
Waited (0   s   000027866   ns)
Waited (0   s   000028085   ns)
Waited (0   s   000028012   ns)
Waited (0   s   000028172   ns)
Waited (0   s   000022121   ns)
Waited (0   s   000052940   ns)
Waited (0   s   000032138   ns)
Waited (0   s   000028082   ns)
Waited (0   s   000034486   ns)
Waited (0   s   000018875   ns)
1
radato

ウォール時間(実際に経過する時間)またはサイクル数(サイクル数)に興味がありますか?最初のケースでは、gettimeofdayのようなものを使用する必要があります。

最高解像度のタイマーは、RDTSC x86 Assembly命令を使用します。ただし、これはクロックティックを測定するため、省電力モードが無効になっていることを確認する必要があります。

TSCのWikiページにはいくつかの例があります。 http://en.wikipedia.org/wiki/Time_Stamp_Counter

1
Foo Bah
0

epollの実装: https://github.com/ielife/simple-timer-for-c-language

次のように使用します:

timer_server_handle_t *timer_handle = timer_server_init(1024);
if (NULL == timer_handle) {
    fprintf(stderr, "timer_server_init failed\n");
    return -1;
}
ctimer timer1;
    timer1.count_ = 3;
    timer1.timer_internal_ = 0.5;
    timer1.timer_cb_ = timer_cb1;
    int *user_data1 = (int *)malloc(sizeof(int));
    *user_data1 = 100;
    timer1.user_data_ = user_data1;
    timer_server_addtimer(timer_handle, &timer1);

    ctimer timer2;
    timer2.count_ = -1;
    timer2.timer_internal_ = 0.5;
    timer2.timer_cb_ = timer_cb2;
    int *user_data2 = (int *)malloc(sizeof(int));
    *user_data2 = 10;
    timer2.user_data_ = user_data2;
    timer_server_addtimer(timer_handle, &timer2);

    sleep(10);

    timer_server_deltimer(timer_handle, timer1.fd);
    timer_server_deltimer(timer_handle, timer2.fd);
    timer_server_uninit(timer_handle);
0
Kevin Lee