円周率の桁数はどこにありますか?私はすでにPiFastを使用して31.4億を計算しました(ワインの下でうまく機能します)。
ダウンロード速度が遅いことは気にしません。
あなたが気にしないと言っているのは知っていますが、私は真剣に疑っていますあなたのCPUはあなたのネットワークカードがそれらをダウンロードすることができるよりも速くそれらを計算することができます。
最後の桁とそれを生成するために使用された計算機の現在の状態が与えられると、次の桁は一定時間で見つけることができます。次の素数を見つけるように、徐々に難しくなることはありません。
Ubuntuでは、Sudo apt-get install pi
その後:
$ pi 100 3.141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825342117067
計算する桁数を指定して、任意の精度を計算します。
Joelのコメントに加えて、 SuperPi はこのための最も人気のあるツールの1つです。ストレステストにも使用されます。
Pythonを使用して計算する場合は、非常に高速な方法があります(Pythonとgmpy2ライブラリを使用))。
http://www.craig-wood.com/nick/articles/pi-chudnovsky/
小さな修正を加えたコードは次のとおりです。
"""
Python3 program to calculate Pi using python long integers, binary
splitting and the Chudnovsky algorithm
See: http://www.craig-wood.com/nick/articles/pi-chudnovsky/ for more
info
Nick Craig-Wood <[email protected]>
"""
import math
from gmpy2 import mpz
from time import time
import gmpy2
def pi_chudnovsky_bs(digits):
"""
Compute int(pi * 10**digits)
This is done using Chudnovsky's series with binary splitting
"""
C = 640320
C3_OVER_24 = C**3 // 24
def bs(a, b):
"""
Computes the terms for binary splitting the Chudnovsky infinite series
a(a) = +/- (13591409 + 545140134*a)
p(a) = (6*a-5)*(2*a-1)*(6*a-1)
b(a) = 1
q(a) = a*a*a*C3_OVER_24
returns P(a,b), Q(a,b) and T(a,b)
"""
if b - a == 1:
# Directly compute P(a,a+1), Q(a,a+1) and T(a,a+1)
if a == 0:
Pab = Qab = mpz(1)
else:
Pab = mpz((6*a-5)*(2*a-1)*(6*a-1))
Qab = mpz(a*a*a*C3_OVER_24)
Tab = Pab * (13591409 + 545140134*a) # a(a) * p(a)
if a & 1:
Tab = -Tab
else:
# Recursively compute P(a,b), Q(a,b) and T(a,b)
# m is the midpoint of a and b
m = (a + b) // 2
# Recursively calculate P(a,m), Q(a,m) and T(a,m)
Pam, Qam, Tam = bs(a, m)
# Recursively calculate P(m,b), Q(m,b) and T(m,b)
Pmb, Qmb, Tmb = bs(m, b)
# Now combine
Pab = Pam * Pmb
Qab = Qam * Qmb
Tab = Qmb * Tam + Pam * Tmb
return Pab, Qab, Tab
# how many terms to compute
DIGITS_PER_TERM = math.log10(C3_OVER_24/6/2/6)
N = int(digits/DIGITS_PER_TERM + 1)
# Calclate P(0,N) and Q(0,N)
P, Q, T = bs(0, N)
one_squared = mpz(10)**(2*digits)
#sqrtC = (10005*one_squared).sqrt()
sqrtC = gmpy2.isqrt(10005*one_squared)
return (Q*426880*sqrtC) // T
# The last 5 digits or pi for various numbers of digits
check_digits = {
100 : 70679,
1000 : 1989,
10000 : 75678,
100000 : 24646,
1000000 : 58151,
10000000 : 55897,
}
if __name__ == "__main__":
digits = 100
pi = pi_chudnovsky_bs(digits)
print(pi)
#raise SystemExit
for log10_digits in range(1,9):
digits = 10**log10_digits
start =time()
pi = pi_chudnovsky_bs(digits)
print("chudnovsky_gmpy_mpz_bs: digits",digits,"time",time()-start)
if digits in check_digits:
last_five_digits = pi % 100000
if check_digits[digits] == last_five_digits:
print("Last 5 digits %05d OK" % last_five_digits)
open("%s_pi.txt" % log10_digits, "w").write(str(pi))
else:
print("Last 5 digits %05d wrong should be %05d" % (last_five_digits, check_digits[digits]))