文字列のすべての順列を見つけるためのエレガントな方法は何ですか。例えば。 ba
はba
とab
になりますが、abcdefgh
はどうでしょうか。 Javaの実装例はありますか?
public static void permutation(String str) {
permutation("", str);
}
private static void permutation(String prefix, String str) {
int n = str.length();
if (n == 0) System.out.println(prefix);
else {
for (int i = 0; i < n; i++)
permutation(prefix + str.charAt(i), str.substring(0, i) + str.substring(i+1, n));
}
}
(via Javaによるプログラミング入門 )
再帰を使う.
これは、「コーディングインタビューのクラッキング」という本(P54)の考えに基づいた私の解決策です。
/**
* List permutations of a string.
*
* @param s the input string
* @return the list of permutations
*/
public static ArrayList<String> permutation(String s) {
// The result
ArrayList<String> res = new ArrayList<String>();
// If input string's length is 1, return {s}
if (s.length() == 1) {
res.add(s);
} else if (s.length() > 1) {
int lastIndex = s.length() - 1;
// Find out the last character
String last = s.substring(lastIndex);
// Rest of the string
String rest = s.substring(0, lastIndex);
// Perform permutation on the rest string and
// merge with the last character
res = merge(permutation(rest), last);
}
return res;
}
/**
* @param list a result of permutation, e.g. {"ab", "ba"}
* @param c the last character
* @return a merged new list, e.g. {"cab", "acb" ... }
*/
public static ArrayList<String> merge(ArrayList<String> list, String c) {
ArrayList<String> res = new ArrayList<>();
// Loop through all the string in the list
for (String s : list) {
// For each string, insert the last character to all possible positions
// and add them to the new list
for (int i = 0; i <= s.length(); ++i) {
String ps = new StringBuffer(s).insert(i, c).toString();
res.add(ps);
}
}
return res;
}
文字列 "abcd"の実行中の出力:
ステップ1:[a]とb:[ba、ab]を結合する
ステップ2:[ba、ab]とc:[cba、bca、bac、cab、acb、abc]をマージします。
ステップ3:[cba、bca、bac、cab、acb、abc]とd:[dcba、cdba、cbda、cbad、dbca、bdca、bcda、bcad、dbac、bdac、badc、bacd、dcab、cdab、cadb 、cabd、dacb、adcb、acdb、acbd、dabc、adbc、abdc、abcd]
ここや他のフォーラムで提供されているすべての解決策の中で、私はMark Byersが最も好きでした。その記述は実際に私に考えさせ、それを自分でコーディングさせました。残念ですが、私は初心者なので彼の解決策を投票することはできません。
とにかく、ここに私の彼の説明の実装があります
public class PermTest {
public static void main(String[] args) throws Exception {
String str = "abcdef";
StringBuffer strBuf = new StringBuffer(str);
doPerm(strBuf,str.length());
}
private static void doPerm(StringBuffer str, int index){
if(index <= 0)
System.out.println(str);
else { //recursively solve this by placing all other chars at current first pos
doPerm(str, index-1);
int currPos = str.length()-index;
for (int i = currPos+1; i < str.length(); i++) {//start swapping all other chars with current first char
swap(str,currPos, i);
doPerm(str, index-1);
swap(str,i, currPos);//restore back my string buffer
}
}
}
private static void swap(StringBuffer str, int pos1, int pos2){
char t1 = str.charAt(pos1);
str.setCharAt(pos1, str.charAt(pos2));
str.setCharAt(pos2, t1);
}
}
このソリューションはStringBufferを使用しているため、このスレッドの最初のソリューションよりもこのソリューションの方が適しています。私のソリューションでは一時的な文字列を作成しないとは思いません(実際にはStringBufferのtoString()
が呼び出されるsystem.out.println
で行われます)。しかし、私はこれがあまりにも多くの文字列リテラルが作成される最初の解決策よりも優れていると感じます。パフォーマンスの問題があるかもしれませんが、これは「メモリ」の観点から評価できます(「時間」については、その余分な「スワップ」のためにすでに遅れています)
Javaでの非常に基本的な解決策は、解の文字列を格納して返したい場合はrecursion + Setを使用することです(繰り返しを避けるため)。
public static Set<String> generatePerm(String input)
{
Set<String> set = new HashSet<String>();
if (input == "")
return set;
Character a = input.charAt(0);
if (input.length() > 1)
{
input = input.substring(1);
Set<String> permSet = generatePerm(input);
for (String x : permSet)
{
for (int i = 0; i <= x.length(); i++)
{
set.add(x.substring(0, i) + a + x.substring(i));
}
}
}
else
{
set.add(a + "");
}
return set;
}
これまでのすべての貢献者は、コードを説明し、提供するのに素晴らしい仕事をしました。私もこのアプローチを共有するべきだと思いました。解は( ヒープのアルゴリズム )に基づいています。
もののカップル:
Excelに表示される最後の項目は、ロジックを視覚化するためのものです。そのため、最後の列の実際の値は2,1,0になります(配列を処理しているためにコードを実行し、配列が0で始まる場合)。
スワッピングアルゴリズムは、現在位置の偶数または奇数の値に基づいて行われます。スワップメソッドがどこで呼び出されているのかを見れば、一目瞭然です。何が起こっているのかわかります。
これが起こるのです:
public static void main(String[] args) {
String ourword = "abc";
String[] ourArray = ourword.split("");
permute(ourArray, ourArray.length);
}
private static void swap(String[] ourarray, int right, int left) {
String temp = ourarray[right];
ourarray[right] = ourarray[left];
ourarray[left] = temp;
}
public static void permute(String[] ourArray, int currentPosition) {
if (currentPosition == 1) {
System.out.println(Arrays.toString(ourArray));
} else {
for (int i = 0; i < currentPosition; i++) {
// subtract one from the last position (here is where you are
// selecting the the next last item
permute(ourArray, currentPosition - 1);
// if it's odd position
if (currentPosition % 2 == 1) {
swap(ourArray, 0, currentPosition - 1);
} else {
swap(ourArray, i, currentPosition - 1);
}
}
}
}
これは再帰なし
public static void permute(String s) {
if(null==s || s.isEmpty()) {
return;
}
// List containing words formed in each iteration
List<String> strings = new LinkedList<String>();
strings.add(String.valueOf(s.charAt(0))); // add the first element to the list
// Temp list that holds the set of strings for
// appending the current character to all position in each Word in the original list
List<String> tempList = new LinkedList<String>();
for(int i=1; i< s.length(); i++) {
for(int j=0; j<strings.size(); j++) {
tempList.addAll(merge(s.charAt(i), strings.get(j)));
}
strings.removeAll(strings);
strings.addAll(tempList);
tempList.removeAll(tempList);
}
for(int i=0; i<strings.size(); i++) {
System.out.println(strings.get(i));
}
}
/**
* helper method that appends the given character at each position in the given string
* and returns a set of such modified strings
* - set removes duplicates if any(in case a character is repeated)
*/
private static Set<String> merge(Character c, String s) {
if(s==null || s.isEmpty()) {
return null;
}
int len = s.length();
StringBuilder sb = new StringBuilder();
Set<String> list = new HashSet<String>();
for(int i=0; i<= len; i++) {
sb = new StringBuilder();
sb.append(s.substring(0, i) + c + s.substring(i, len));
list.add(sb.toString());
}
return list;
}
例として入力abc
を使用しましょう。
集合(["c"]
)内の最後の要素(c
)だけで始めて、それからその前部、末尾、および中央のすべての可能な位置に最後の要素(b
)を追加し、["bc", "cb"]
にします。後ろから次の要素(a
)をセットの各文字列に追加します。
"a" + "bc" = ["abc", "bac", "bca"] and "a" + "cb" = ["acb" ,"cab", "cba"]
このように全体の並べ替え:
["abc", "bac", "bca","acb" ,"cab", "cba"]
コード:
public class Test
{
static Set<String> permutations;
static Set<String> result = new HashSet<String>();
public static Set<String> permutation(String string) {
permutations = new HashSet<String>();
int n = string.length();
for (int i = n - 1; i >= 0; i--)
{
shuffle(string.charAt(i));
}
return permutations;
}
private static void shuffle(char c) {
if (permutations.size() == 0) {
permutations.add(String.valueOf(c));
} else {
Iterator<String> it = permutations.iterator();
for (int i = 0; i < permutations.size(); i++) {
String temp1;
for (; it.hasNext();) {
temp1 = it.next();
for (int k = 0; k < temp1.length() + 1; k += 1) {
StringBuilder sb = new StringBuilder(temp1);
sb.insert(k, c);
result.add(sb.toString());
}
}
}
permutations = result;
//'result' has to be refreshed so that in next run it doesn't contain stale values.
result = new HashSet<String>();
}
}
public static void main(String[] args) {
Set<String> result = permutation("abc");
System.out.println("\nThere are total of " + result.size() + " permutations:");
Iterator<String> it = result.iterator();
while (it.hasNext()) {
System.out.println(it.next());
}
}
}
まあ、これはエレガントで非再帰的なO(n!)の解決策です。
public static StringBuilder[] permutations(String s) {
if (s.length() == 0)
return null;
int length = fact(s.length());
StringBuilder[] sb = new StringBuilder[length];
for (int i = 0; i < length; i++) {
sb[i] = new StringBuilder();
}
for (int i = 0; i < s.length(); i++) {
char ch = s.charAt(i);
int times = length / (i + 1);
for (int j = 0; j < times; j++) {
for (int k = 0; k < length / times; k++) {
sb[j * length / times + k].insert(k, ch);
}
}
}
return sb;
}
単純な解決策の1つは、2つのポインタを使用して文字を再帰的に交換し続けることです。
public static void main(String[] args)
{
String str="abcdefgh";
perm(str);
}
public static void perm(String str)
{ char[] char_arr=str.toCharArray();
helper(char_arr,0);
}
public static void helper(char[] char_arr, int i)
{
if(i==char_arr.length-1)
{
// print the shuffled string
String str="";
for(int j=0; j<char_arr.length; j++)
{
str=str+char_arr[j];
}
System.out.println(str);
}
else
{
for(int j=i; j<char_arr.length; j++)
{
char tmp = char_arr[i];
char_arr[i] = char_arr[j];
char_arr[j] = tmp;
helper(char_arr,i+1);
char tmp1 = char_arr[i];
char_arr[i] = char_arr[j];
char_arr[j] = tmp1;
}
}
}
pythonの実装
def getPermutation(s, prefix=''):
if len(s) == 0:
print prefix
for i in range(len(s)):
getPermutation(s[0:i]+s[i+1:len(s)],prefix+s[i] )
getPermutation('abcd','')
これは私のために働きました..
import Java.util.Arrays;
public class StringPermutations{
public static void main(String args[]) {
String inputString = "ABC";
permute(inputString.toCharArray(), 0, inputString.length()-1);
}
public static void permute(char[] ary, int startIndex, int endIndex) {
if(startIndex == endIndex){
System.out.println(String.valueOf(ary));
}else{
for(int i=startIndex;i<=endIndex;i++) {
swap(ary, startIndex, i );
permute(ary, startIndex+1, endIndex);
swap(ary, startIndex, i );
}
}
}
public static void swap(char[] ary, int x, int y) {
char temp = ary[x];
ary[x] = ary[y];
ary[y] = temp;
}
}
再帰を使う.
入力が空の文字列の場合、唯一の置換は空の文字列です。最初の文字として文字列内の各文字を試してから、再帰呼び出しを使用して残りの文字のすべての順列を見つけます。
import Java.util.ArrayList;
import Java.util.List;
class Permutation {
private static List<String> permutation(String prefix, String str) {
List<String> permutations = new ArrayList<>();
int n = str.length();
if (n == 0) {
permutations.add(prefix);
} else {
for (int i = 0; i < n; i++) {
permutations.addAll(permutation(prefix + str.charAt(i), str.substring(i + 1, n) + str.substring(0, i)));
}
}
return permutations;
}
public static void main(String[] args) {
List<String> perms = permutation("", "abcd");
String[] array = new String[perms.size()];
for (int i = 0; i < perms.size(); i++) {
array[i] = perms.get(i);
}
int x = array.length;
for (final String anArray : array) {
System.out.println(anArray);
}
}
}
import Java.io.IOException;
import Java.util.ArrayList;
import Java.util.Scanner;
public class hello {
public static void main(String[] args) throws IOException {
hello h = new hello();
h.printcomp();
}
int fact=1;
public void factrec(int a,int k){
if(a>=k)
{fact=fact*k;
k++;
factrec(a,k);
}
else
{System.out.println("The string will have "+fact+" permutations");
}
}
public void printcomp(){
String str;
int k;
Scanner in = new Scanner(System.in);
System.out.println("enter the string whose permutations has to b found");
str=in.next();
k=str.length();
factrec(k,1);
String[] arr =new String[fact];
char[] array = str.toCharArray();
while(p<fact)
printcomprec(k,array,arr);
// if incase u need array containing all the permutation use this
//for(int d=0;d<fact;d++)
//System.out.println(arr[d]);
}
int y=1;
int p = 0;
int g=1;
int z = 0;
public void printcomprec(int k,char array[],String arr[]){
for (int l = 0; l < k; l++) {
for (int b=0;b<k-1;b++){
for (int i=1; i<k-g; i++) {
char temp;
String stri = "";
temp = array[i];
array[i] = array[i + g];
array[i + g] = temp;
for (int j = 0; j < k; j++)
stri += array[j];
arr[z] = stri;
System.out.println(arr[z] + " " + p++);
z++;
}
}
char temp;
temp=array[0];
array[0]=array[y];
array[y]=temp;
if (y >= k-1)
y=y-(k-1);
else
y++;
}
if (g >= k-1)
g=1;
else
g++;
}
}
これは、Javaでの単純明快な再帰的な解決策です。
public static ArrayList<String> permutations(String s) {
ArrayList<String> out = new ArrayList<String>();
if (s.length() == 1) {
out.add(s);
return out;
}
char first = s.charAt(0);
String rest = s.substring(1);
for (String permutation : permutations(rest)) {
out.addAll(insertAtAllPositions(first, permutation));
}
return out;
}
public static ArrayList<String> insertAtAllPositions(char ch, String s) {
ArrayList<String> out = new ArrayList<String>();
for (int i = 0; i <= s.length(); ++i) {
String inserted = s.substring(0, i) + ch + s.substring(i);
out.add(inserted);
}
return out;
}
再帰なしのJava実装
public Set<String> permutate(String s){
Queue<String> permutations = new LinkedList<String>();
Set<String> v = new HashSet<String>();
permutations.add(s);
while(permutations.size()!=0){
String str = permutations.poll();
if(!v.contains(str)){
v.add(str);
for(int i = 0;i<str.length();i++){
String c = String.valueOf(str.charAt(i));
permutations.add(str.substring(i+1) + c + str.substring(0,i));
}
}
}
return v;
}
Kotlinを使ってこの問題に取り組みましょう。
fun <T> List<T>.permutations(): List<List<T>> {
//escape case
if (this.isEmpty()) return emptyList()
if (this.size == 1) return listOf(this)
if (this.size == 2) return listOf(listOf(this.first(), this.last()), listOf(this.last(), this.first()))
//recursive case
return this.flatMap { lastItem ->
this.minus(lastItem).permutations().map { it.plus(lastItem) }
}
}
コアコンセプト:長いリストを小さなリスト+再帰に分解する
例のリスト[1、2、3、4]で長い答え:
4のリストでさえ、あなたの頭の中ですべての可能な順列をリストしようとするのはもうちょっと混乱するでしょう、そして、我々がする必要があるのはまさにそれを避けることです。サイズ0、1、および2のリストのすべての順列を作成する方法を理解するのは簡単なので、必要なのはそれらをそれらのサイズのいずれかに分割し、それらを正しく組み合わせ直すことです。ジャックポットマシーンを想像してみてください。このアルゴリズムは右から左へ回転し始め、書き留めます。
/** Returns an array list containing all
* permutations of the characters in s. */
public static ArrayList<String> permute(String s) {
ArrayList<String> perms = new ArrayList<>();
int slen = s.length();
if (slen > 0) {
// Add the first character from s to the perms array list.
perms.add(Character.toString(s.charAt(0)));
// Repeat for all additional characters in s.
for (int i = 1; i < slen; ++i) {
// Get the next character from s.
char c = s.charAt(i);
// For each of the strings currently in perms do the following:
int size = perms.size();
for (int j = 0; j < size; ++j) {
// 1. remove the string
String p = perms.remove(0);
int plen = p.length();
// 2. Add plen + 1 new strings to perms. Each new string
// consists of the removed string with the character c
// inserted into it at a unique location.
for (int k = 0; k <= plen; ++k) {
perms.add(p.substring(0, k) + c + p.substring(k));
}
}
}
}
return perms;
}
これは、順列と再帰関数呼び出しの基本的な理解を通して私がしたことです。少し時間がかかりますが、独立して行われます。
public class LexicographicPermutations {
public static void main(String[] args) {
// TODO Auto-generated method stub
String s="abc";
List<String>combinations=new ArrayList<String>();
combinations=permutations(s);
Collections.sort(combinations);
System.out.println(combinations);
}
private static List<String> permutations(String s) {
// TODO Auto-generated method stub
List<String>combinations=new ArrayList<String>();
if(s.length()==1){
combinations.add(s);
}
else{
for(int i=0;i<s.length();i++){
List<String>temp=permutations(s.substring(0, i)+s.substring(i+1));
for (String string : temp) {
combinations.add(s.charAt(i)+string);
}
}
}
return combinations;
}}
これは Output を[abc, acb, bac, bca, cab, cba]
として生成します。
その背後にある基本的なロジックは
各文字について、最初の文字とみなし、残りの文字の組み合わせを見つけます。例えば[abc](Combination of abc)->
。
a->[bc](a x Combination of (bc))->{abc,acb}
b->[ac](b x Combination of (ac))->{bac,bca}
c->[ab](c x Combination of (ab))->{cab,cba}
そして、それぞれの[bc]
、[ac]
、および[ab]
を独立して再帰的に呼び出します。
特定の文字で始まる文字列の数を見つけるために階乗を使用できます。
例:入力abcd
を取ります。 (3!) == 6
文字列はabcd
のすべての文字で始まります。
static public int facts(int x){
int sum = 1;
for (int i = 1; i < x; i++) {
sum *= (i+1);
}
return sum;
}
public static void permutation(String str) {
char[] str2 = str.toCharArray();
int n = str2.length;
int permutation = 0;
if (n == 1) {
System.out.println(str2[0]);
} else if (n == 2) {
System.out.println(str2[0] + "" + str2[1]);
System.out.println(str2[1] + "" + str2[0]);
} else {
for (int i = 0; i < n; i++) {
if (true) {
char[] str3 = str.toCharArray();
char temp = str3[i];
str3[i] = str3[0];
str3[0] = temp;
str2 = str3;
}
for (int j = 1, count = 0; count < facts(n-1); j++, count++) {
if (j != n-1) {
char temp1 = str2[j+1];
str2[j+1] = str2[j];
str2[j] = temp1;
} else {
char temp1 = str2[n-1];
str2[n-1] = str2[1];
str2[1] = temp1;
j = 1;
} // end of else block
permutation++;
System.out.print("permutation " + permutation + " is -> ");
for (int k = 0; k < n; k++) {
System.out.print(str2[k]);
} // end of loop k
System.out.println();
} // end of loop j
} // end of loop i
}
}
これは、文字列の置換を行うもう1つの簡単な方法です。
public class Solution4 {
public static void main(String[] args) {
String a = "Protijayi";
per(a, 0);
}
static void per(String a , int start ) {
//bse case;
if(a.length() == start) {System.out.println(a);}
char[] ca = a.toCharArray();
//swap
for (int i = start; i < ca.length; i++) {
char t = ca[i];
ca[i] = ca[start];
ca[start] = t;
per(new String(ca),start+1);
}
}//per
}
文字列の置換:
public static void main(String args[]) {
permu(0,"ABCD");
}
static void permu(int fixed,String s) {
char[] chr=s.toCharArray();
if(fixed==s.length())
System.out.println(s);
for(int i=fixed;i<s.length();i++) {
char c=chr[i];
chr[i]=chr[fixed];
chr[fixed]=c;
permu(fixed+1,new String(chr));
}
}
Recursionは必要ありません。たとえあなたがanyの順列を直接計算することができるとしても、この解決法は総称を使ってあらゆる配列を順列にします。
ここ はこのアルゴリズムについての良い情報です。
C#開発者のために ここ はもっと便利な実装です。
public static void main(String[] args) {
String Word = "12345";
Character[] array = ArrayUtils.toObject(Word.toCharArray());
long[] factorials = Permutation.getFactorials(array.length + 1);
for (long i = 0; i < factorials[array.length]; i++) {
Character[] permutation = Permutation.<Character>getPermutation(i, array, factorials);
printPermutation(permutation);
}
}
private static void printPermutation(Character[] permutation) {
for (int i = 0; i < permutation.length; i++) {
System.out.print(permutation[i]);
}
System.out.println();
}
このアルゴリズムは、各permutationを計算するためにO(N)timeおよびspaceの複雑さを持ちます。
public class Permutation {
public static <T> T[] getPermutation(long permutationNumber, T[] array, long[] factorials) {
int[] sequence = generateSequence(permutationNumber, array.length - 1, factorials);
T[] permutation = generatePermutation(array, sequence);
return permutation;
}
public static <T> T[] generatePermutation(T[] array, int[] sequence) {
T[] clone = array.clone();
for (int i = 0; i < clone.length - 1; i++) {
swap(clone, i, i + sequence[i]);
}
return clone;
}
private static int[] generateSequence(long permutationNumber, int size, long[] factorials) {
int[] sequence = new int[size];
for (int j = 0; j < sequence.length; j++) {
long factorial = factorials[sequence.length - j];
sequence[j] = (int) (permutationNumber / factorial);
permutationNumber = (int) (permutationNumber % factorial);
}
return sequence;
}
private static <T> void swap(T[] array, int i, int j) {
T t = array[i];
array[i] = array[j];
array[j] = t;
}
public static long[] getFactorials(int length) {
long[] factorials = new long[length];
long factor = 1;
for (int i = 0; i < length; i++) {
factor *= i <= 1 ? 1 : i;
factorials[i] = factor;
}
return factorials;
}
}
//Rotate and create words beginning with all letter possible and Push to stack 1
//Read from stack1 and for each Word create words with other letters at the next location by rotation and so on
/* eg : man
1. Push1 - man, anm, nma
2. pop1 - nma , Push2 - nam,nma
pop1 - anm , Push2 - amn,anm
pop1 - man , Push2 - mna,man
*/
public class StringPermute {
static String str;
static String Word;
static int top1 = -1;
static int top2 = -1;
static String[] stringArray1;
static String[] stringArray2;
static int strlength = 0;
public static void main(String[] args) throws IOException {
System.out.println("Enter String : ");
InputStreamReader isr = new InputStreamReader(System.in);
BufferedReader bfr = new BufferedReader(isr);
str = bfr.readLine();
Word = str;
strlength = str.length();
int n = 1;
for (int i = 1; i <= strlength; i++) {
n = n * i;
}
stringArray1 = new String[n];
stringArray2 = new String[n];
Push(Word, 1);
doPermute();
display();
}
public static void Push(String Word, int x) {
if (x == 1)
stringArray1[++top1] = Word;
else
stringArray2[++top2] = Word;
}
public static String pop(int x) {
if (x == 1)
return stringArray1[top1--];
else
return stringArray2[top2--];
}
public static void doPermute() {
for (int j = strlength; j >= 2; j--)
popper(j);
}
public static void popper(int length) {
// pop from stack1 , rotate each Word n times and Push to stack 2
if (top1 > -1) {
while (top1 > -1) {
Word = pop(1);
for (int j = 0; j < length; j++) {
rotate(length);
Push(Word, 2);
}
}
}
// pop from stack2 , rotate each Word n times w.r.t position and Push to
// stack 1
else {
while (top2 > -1) {
Word = pop(2);
for (int j = 0; j < length; j++) {
rotate(length);
Push(Word, 1);
}
}
}
}
public static void rotate(int position) {
char[] charstring = new char[100];
for (int j = 0; j < Word.length(); j++)
charstring[j] = Word.charAt(j);
int startpos = strlength - position;
char temp = charstring[startpos];
for (int i = startpos; i < strlength - 1; i++) {
charstring[i] = charstring[i + 1];
}
charstring[strlength - 1] = temp;
Word = new String(charstring).trim();
}
public static void display() {
int top;
if (top1 > -1) {
while (top1 > -1)
System.out.println(stringArray1[top1--]);
} else {
while (top2 > -1)
System.out.println(stringArray2[top2--]);
}
}
}
重複文字を考慮して特定の文字列のすべての置換を出力し、一意の文字のみを出力するJava実装は次のとおりです。
import Java.util.Set;
import Java.util.HashSet;
public class PrintAllPermutations2
{
public static void main(String[] args)
{
String str = "AAC";
PrintAllPermutations2 permutation = new PrintAllPermutations2();
Set<String> uniqueStrings = new HashSet<>();
permutation.permute("", str, uniqueStrings);
}
void permute(String prefixString, String s, Set<String> set)
{
int n = s.length();
if(n == 0)
{
if(!set.contains(prefixString))
{
System.out.println(prefixString);
set.add(prefixString);
}
}
else
{
for(int i=0; i<n; i++)
{
permute(prefixString + s.charAt(i), s.substring(0,i) + s.substring(i+1,n), set);
}
}
}
}
これはCの解決策です。
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <stdlib.h>
char* addLetter(char* string, char *c) {
char* result = malloc(sizeof(string) + 2);
strcpy(result, string);
strncat(result, c, 1);
return result;
}
char* removeLetter(char* string, char *c) {
char* result = malloc(sizeof(string));
int j = 0;
for (int i = 0; i < strlen(string); i++) {
if (string[i] != *c) {
result[j++] = string[i];
}
}
result[j] = '\0';
return result;
}
void makeAnagram(char *anagram, char *letters) {
if (*letters == '\0') {
printf("%s\n", anagram);
return;
}
char *c = letters;
while (*c != '\0') {
makeAnagram(addLetter(anagram, c),
removeLetter(letters, c));
c++;
}
}
int main() {
makeAnagram("", "computer");
return 0;
}
もう1つの簡単な方法は、文字列をループ処理し、まだ使用されていない文字を選択してバッファに入れ、バッファサイズが文字列の長さに等しくなるまでループを続けることです。私はこのバックトラッキングソリューションが好きだから:
これがJavaコードです。
List<String> permute(String str) {
if (str == null) {
return null;
}
char[] chars = str.toCharArray();
boolean[] used = new boolean[chars.length];
List<String> res = new ArrayList<String>();
StringBuilder sb = new StringBuilder();
Arrays.sort(chars);
helper(chars, used, sb, res);
return res;
}
void helper(char[] chars, boolean[] used, StringBuilder sb, List<String> res) {
if (sb.length() == chars.length) {
res.add(sb.toString());
return;
}
for (int i = 0; i < chars.length; i++) {
// avoid duplicates
if (i > 0 && chars[i] == chars[i - 1] && !used[i - 1]) {
continue;
}
// pick the character that has not used yet
if (!used[i]) {
used[i] = true;
sb.append(chars[i]);
helper(chars, used, sb, res);
// back tracking
sb.deleteCharAt(sb.length() - 1);
used[i] = false;
}
}
}
入力str:1231
出力リスト:{1123、1132、1213、1231、1312、1321、2113、2131、2311、3112、3121、3211}
出力がソートされていること、および重複する結果がないことに気付いた。
Voidメソッドを介して印刷する代わりに、順列を生成して何かを実行したい場合:
static List<int[]> permutations(int n) {
class Perm {
private final List<int[]> permutations = new ArrayList<>();
private void perm(int[] array, int step) {
if (step == 1) permutations.add(array.clone());
else for (int i = 0; i < step; i++) {
perm(array, step - 1);
int j = (step % 2 == 0) ? i : 0;
swap(array, step - 1, j);
}
}
private void swap(int[] array, int i, int j) {
int buffer = array[i];
array[i] = array[j];
array[j] = buffer;
}
}
int[] nVector = new int[n];
for (int i = 0; i < n; i++) nVector [i] = i;
Perm perm = new Perm();
perm.perm(nVector, n);
return perm.permutations;
}
(参照用に)2つのc#バージョンがあります。1.すべての置換を出力します2.すべての置換を返します
アルゴリズムの基本的な要点は次のとおりです(おそらく以下のコードがより直観的です - それにもかかわらず、以下はコードの下で何をするかについてのいくつかの説明です)。次のインデックスの残りの要素を再帰的に - 入れ替えて順序を元に戻す
注:上記の再帰関数は開始インデックスから呼び出されます。
private void PrintAllPermutations(int[] a, int index, ref int count)
{
if (index == (a.Length - 1))
{
count++;
var s = string.Format("{0}: {1}", count, string.Join(",", a));
Debug.WriteLine(s);
}
for (int i = index; i < a.Length; i++)
{
Utilities.swap(ref a[i], ref a[index]);
this.PrintAllPermutations(a, index + 1, ref count);
Utilities.swap(ref a[i], ref a[index]);
}
}
private int PrintAllPermutations(int[] a)
{
a.ThrowIfNull("a");
int count = 0;
this.PrintAllPermutations(a, index:0, count: ref count);
return count;
}
バージョン2(上と同じですが、印刷の代わりに順列を返します)
private int[][] GetAllPermutations(int[] a, int index)
{
List<int[]> permutations = new List<int[]>();
if (index == (a.Length - 1))
{
permutations.Add(a.ToArray());
}
for (int i = index; i < a.Length; i++)
{
Utilities.swap(ref a[i], ref a[index]);
var r = this.GetAllPermutations(a, index + 1);
permutations.AddRange(r);
Utilities.swap(ref a[i], ref a[index]);
}
return permutations.ToArray();
}
private int[][] GetAllPermutations(int[] p)
{
p.ThrowIfNull("p");
return this.GetAllPermutations(p, 0);
}
ユニットテスト
[TestMethod]
public void PermutationsTests()
{
List<int> input = new List<int>();
int[] output = { 0, 1, 2, 6, 24, 120 };
for (int i = 0; i <= 5; i++)
{
if (i != 0)
{
input.Add(i);
}
Debug.WriteLine("================PrintAllPermutations===================");
int count = this.PrintAllPermutations(input.ToArray());
Assert.IsTrue(count == output[i]);
Debug.WriteLine("=====================GetAllPermutations=================");
var r = this.GetAllPermutations(input.ToArray());
Assert.IsTrue(count == r.Length);
for (int j = 1; j <= r.Length;j++ )
{
string s = string.Format("{0}: {1}", j,
string.Join(",", r[j - 1]));
Debug.WriteLine(s);
}
Debug.WriteLine("No.OfElements: {0}, TotalPerms: {1}", i, count);
}
}
再帰的Pythonソリューション
def permute(input_str):
_permute("", input_str)
def _permute(prefix, str_to_permute):
if str_to_permute == '':
print(prefix)
else:
for i in range(len(str_to_permute)):
_permute(prefix+str_to_permute[i], str_to_permute[0:i] + str_to_permute[i+1:])
if __== '__main__':
permute('foobar')
これはビット操作を使用して簡単に実行できます。 「N個の要素を持つ任意の集合には2N個の可能なサブセットがあります。サブセット内の各要素をビットで表すとどうなりますか。ビットは0または1のどちらでもかまいません。要素はこの与えられたサブセットに属するかどうかではないので、各ビットパターンはサブセットを表します。」 [コピーした文章]
private void getPermutation(String str)
{
if(str==null)
return;
Set<String> StrList = new HashSet<String>();
StringBuilder strB= new StringBuilder();
for(int i = 0;i < (1 << str.length()); ++i)
{
strB.setLength(0); //clear the StringBuilder
for(int j = 0;j < str.length() ;++j){
if((i & (1 << j))>0){ // to check whether jth bit is set
strB.append(str.charAt(j));
}
}
if(!strB.toString().isEmpty())
StrList.add(strB.toString());
}
System.out.println(Arrays.toString(StrList.toArray()));
}
とにかくpythonで
def perms(in_str, prefix=""):
if not len(in_str) :
print(prefix)
else:
for i in range(0, len(in_str)):
perms(in_str[:i] + in_str[i + 1:], prefix + in_str[i])
perms('ASD')
//各文字を配列リストに挿入する
static ArrayList al = new ArrayList();
private static void findPermutation (String str){
for (int k = 0; k < str.length(); k++) {
addOneChar(str.charAt(k));
}
}
//insert one char into ArrayList
private static void addOneChar(char ch){
String lastPerStr;
String tempStr;
ArrayList locAl = new ArrayList();
for (int i = 0; i < al.size(); i ++ ){
lastPerStr = al.get(i).toString();
//System.out.println("lastPerStr: " + lastPerStr);
for (int j = 0; j <= lastPerStr.length(); j++) {
tempStr = lastPerStr.substring(0,j) + ch +
lastPerStr.substring(j, lastPerStr.length());
locAl.add(tempStr);
//System.out.println("tempStr: " + tempStr);
}
}
if(al.isEmpty()){
al.add(ch);
} else {
al.clear();
al = locAl;
}
}
private static void printArrayList(ArrayList al){
for (int i = 0; i < al.size(); i++) {
System.out.print(al.get(i) + " ");
}
}
answer of Mark Byers に基づいて、私のpython実装は:
def permutations(string):
if len(string) == 1:
return [string]
permutations=[]
for i in range(len(string)):
for perm in permutations(string[:i]+string[i+1:]):
permutations.append(string[i] + perm)
return permutations
集合演算を使用して「他の選択に応じた選択」をモデル化する方がはるかに理解しやすい 依存順列
従属置換では、選択した文字で位置が左から右にいっぱいになるにつれて、使用可能な選択肢が少なくなります。再帰呼び出しの終了条件は、利用可能な選択肢のセットが空かどうかをテストすることです。最終条件が満たされると、並べ替えは完了し、「結果」リストに格納されます。
public static List<String> stringPermutation(String s) {
List<String> results = new ArrayList<>();
Set<Character> charSet = s.chars().mapToObj(m -> (char) m).collect(Collectors.toSet());
stringPermutation(charSet, "", results);
return results;
}
private static void stringPermutation(Set<Character> charSet,
String prefix, List<String> results) {
if (charSet.isEmpty()) {
results.add(prefix);
return;
}
for (Character c : charSet) {
Set<Character> newSet = new HashSet<>(charSet);
newSet.remove(c);
stringPermutation(newSet, prefix + c, results);
}
}
コードを一般化して、一連のオブジェクトの順列を見つけることができます。この場合、私は色のセットを使います。
public enum Color{
ORANGE,RED,BULE,GREEN,YELLOW;
}
public static List<List<Color>> colorPermutation(Set<Color> colors) {
List<List<Color>> results = new ArrayList<>();
List<Color> prefix = new ArrayList<>();
permutation(colors, prefix, results);
return results;
}
private static <T> void permutation(Set<T> set, List<T> prefix, List<List<T>> results) {
if (set.isEmpty()) {
results.add(prefix);
return;
}
for (T t : set) {
Set<T> newSet = new HashSet<>(set);
List<T> newPrefix = new ArrayList<>(prefix);
newSet.remove(t);
newPrefix.add(t);
permutation(newSet, newPrefix, results);
}
}
テスト用のコード.
public static void main(String[] args) {
List<String> stringPerm = stringPermutation("abcde");
System.out.println("# of permutations:" + stringPerm.size());
stringPerm.stream().forEach(e -> System.out.println(e));
Set<Color> colorSet = Arrays.stream(Color.values()).collect(Collectors.toSet());
List<List<Color>> colorPerm = colorPermutation(colorSet);
System.out.println("# of permutations:" + colorPerm.size());
colorPerm.stream().forEach(e -> System.out.println(e));
}
/*
* eg: abc =>{a,bc},{b,ac},{c,ab}
* =>{ca,b},{cb,a}
* =>cba,cab
* =>{ba,c},{bc,a}
* =>bca,bac
* =>{ab,c},{ac,b}
* =>acb,abc
*/
public void nonRecpermute(String prefix, String Word)
{
String[] currentstr ={prefix,Word};
Stack<String[]> stack = new Stack<String[]>();
stack.add(currentstr);
while(!stack.isEmpty())
{
currentstr = stack.pop();
String currentPrefix = currentstr[0];
String currentWord = currentstr[1];
if(currentWord.equals(""))
{
System.out.println("Word ="+currentPrefix);
}
for(int i=0;i<currentWord.length();i++)
{
String[] newstr = new String[2];
newstr[0]=currentPrefix + String.valueOf(currentWord.charAt(i));
newstr[1] = currentWord.substring(0, i);
if(i<currentWord.length()-1)
{
newstr[1] = newstr[1]+currentWord.substring(i+1);
}
stack.Push(newstr);
}
}
}
Es6を使った文字列置換
reduce() method を使用する
const permutations = str => {
if (str.length <= 2)
return str.length === 2 ? [str, str[1] + str[0]] : [str];
return str
.split('')
.reduce(
(acc, letter, index) =>
acc.concat(permutations(str.slice(0, index) + str.slice(index + 1)).map(val => letter + val)),
[]
);
};
console.log(permutations('STR'));
これは、文字列連結計算の複雑さO(n ^ 2)の影響を受けないため、より高速な解決策です。一方、そのループフリー、完全に再帰的
public static void main(String[] args) {
permutation("ABCDEFGHIJKLMNOPQRSTUVWXYZ");
}
private static void permutation(String str) {
char[] stringArray = str.toCharArray();
printPermutation(stringArray, 0, stringArray.length, 0, 1);
}
private static void printPermutation(char[] string, int loopCounter, int length, int indexFrom, int indexTo) {
// Stop condition
if (loopCounter == length)
return;
/*
When reaching the end of the array:
1- Reset loop indices.
2- Increase length counter.
*/
if (indexTo == length) {
indexFrom = 0;
indexTo = 1;
++loopCounter;
}
// Print.
System.out.println(string);
// Swap from / to indices.
char temp = string[indexFrom];
string[indexFrom] = string[indexTo];
string[indexTo] = temp;
// Go for next iteration.
printPermutation(string, loopCounter, length, ++indexFrom, ++indexTo);
}
これは、文字列の各文字を前の部分結果のすべての場所に順番に挿入することで繰り返し実行できます。
[A]
から始めます。これはB
で[BA, AB]
になり、C
、[CBA, BCA, BAC, CAB, etc]
で始まります。
実行時間はO(n!)
になります。これは、テストケースABCD
に対して1 x 2 x 3 x 4
です。
上記の製品では、1
はA
用、2
はB
用などです。
ダーツのサンプル:
void main() {
String insertAt(String a, String b, int index)
{
return a.substring(0, index) + b + a.substring(index);
}
List<String> Permute(String Word) {
var letters = Word.split('');
var p_list = [ letters.first ];
for (var c in letters.sublist(1)) {
var new_list = [ ];
for (var p in p_list)
for (int i = 0; i <= p.length; i++)
new_list.add(insertAt(p, c, i));
p_list = new_list;
}
return p_list;
}
print(Permute("ABCD"));
}
Countdown Quickpermアルゴリズムの一般的な実装 、表現#1(スケーラブル、非再帰的).
/**
* Generate permutations based on the
* Countdown <a href="http://quickperm.org/">Quickperm algorithm</>.
*/
public static <T> List<List<T>> generatePermutations(List<T> list) {
List<T> in = new ArrayList<>(list);
List<List<T>> out = new ArrayList<>(factorial(list.size()));
int n = list.size();
int[] p = new int[n +1];
for (int i = 0; i < p.length; i ++) {
p[i] = i;
}
int i = 0;
while (i < n) {
p[i]--;
int j = 0;
if (i % 2 != 0) { // odd?
j = p[i];
}
// swap
T iTmp = in.get(i);
in.set(i, in.get(j));
in.set(j, iTmp);
i = 1;
while (p[i] == 0){
p[i] = i;
i++;
}
out.add(new ArrayList<>(in));
}
return out;
}
private static int factorial(int num) {
int count = num;
while (num != 1) {
count *= --num;
}
return count;
}
ジェネリックは配列とうまく動作しないので、それはリストを必要とします。
私の実装は、上記のMark Byersの説明に基づいています。
static Set<String> permutations(String str){
if (str.isEmpty()){
return Collections.singleton(str);
}else{
Set <String> set = new HashSet<>();
for (int i=0; i<str.length(); i++)
for (String s : permutations(str.substring(0, i) + str.substring(i+1)))
set.add(str.charAt(i) + s);
return set;
}
}
順列と組み合わせの両方に対してより詳細なNcK/NcRを追加する
public static void combinationNcK(List<String> inputList, String prefix, int chooseCount, List<String> resultList) {
if (chooseCount == 0)
resultList.add(prefix);
else {
for (int i = 0; i < inputList.size(); i++)
combinationNcK(inputList.subList(i + 1, inputList.size()), prefix + "," + inputList.get(i), chooseCount - 1, resultList);
// Finally print once all combinations are done
if (prefix.equalsIgnoreCase("")) {
resultList.stream().map(str -> str.substring(1)).forEach(System.out::println);
}
}
}
public static void permNcK(List<String> inputList, int chooseCount, List<String> resultList) {
for (int count = 0; count < inputList.size(); count++) {
permNcK(inputList, "", chooseCount, resultList);
resultList = new ArrayList<String>();
Collections.rotate(inputList, 1);
System.out.println("-------------------------");
}
}
public static void permNcK(List<String> inputList, String prefix, int chooseCount, List<String> resultList) {
if (chooseCount == 0)
resultList.add(prefix);
else {
for (int i = 0; i < inputList.size(); i++)
combinationNcK(inputList.subList(i + 1, inputList.size()), prefix + "," + inputList.get(i), chooseCount - 1, resultList);
// Finally print once all combinations are done
if (prefix.equalsIgnoreCase("")) {
resultList.stream().map(str -> str.substring(1)).forEach(System.out::println);
}
}
}
public static void main(String[] args) {
List<String> positions = Arrays.asList(new String[] { "1", "2", "3", "4", "5", "6", "7", "8" });
List<String> resultList = new ArrayList<String>();
//combinationNcK(positions, "", 3, resultList);
permNcK(positions, 3, resultList);
}
単純な再帰C++実装は次のようになります。
#include <iostream>
void generatePermutations(std::string &sequence, int index){
if(index == sequence.size()){
std::cout << sequence << "\n";
} else{
generatePermutations(sequence, index + 1);
for(int i = index + 1 ; i < sequence.size() ; ++i){
std::swap(sequence[index], sequence[i]);
generatePermutations(sequence, index + 1);
std::swap(sequence[index], sequence[i]);
}
}
}
int main(int argc, char const *argv[])
{
std::string str = "abc";
generatePermutations(str, 0);
return 0;
}
出力:
abc
acb
bac
bca
cba
cab
UPDATE
結果を保存する場合は、vector
を関数呼び出しの3番目の引数として渡すことができます。さらに、一意の順列のみが必要な場合は、set
を使用できます。
#include <iostream>
#include <vector>
#include <set>
void generatePermutations(std::string &sequence, int index, std::vector <std::string> &v){
if(index == sequence.size()){
//std::cout << sequence << "\n";
v.Push_back(sequence);
} else{
generatePermutations(sequence, index + 1, v);
for(int i = index + 1 ; i < sequence.size() ; ++i){
std::swap(sequence[index], sequence[i]);
generatePermutations(sequence, index + 1, v);
std::swap(sequence[index], sequence[i]);
}
}
}
int main(int argc, char const *argv[])
{
std::string str = "112";
std::vector <std::string> permutations;
generatePermutations(str, 0, permutations);
std::cout << "Number of permutations " << permutations.size() << "\n";
for(const std::string &s : permutations){
std::cout << s << "\n";
}
std::set <std::string> uniquePermutations(permutations.begin(), permutations.end());
std::cout << "Number of unique permutations " << uniquePermutations.size() << "\n";
for(const std::string &s : uniquePermutations){
std::cout << s << "\n";
}
return 0;
}
出力:
Number of permutations 6
112
121
112
121
211
211
Number of unique permutations 3
112
121
211
再帰を使用した簡単なPythonソリューション。
def get_permutations(string):
# base case
if len(string) <= 1:
return set([string])
all_chars_except_last = string[:-1]
last_char = string[-1]
# recursive call: get all possible permutations for all chars except last
permutations_of_all_chars_except_last = get_permutations(all_chars_except_last)
# put the last char in all possible positions for each of the above permutations
permutations = set()
for permutation_of_all_chars_except_last in permutations_of_all_chars_except_last:
for position in range(len(all_chars_except_last) + 1):
permutation = permutation_of_all_chars_except_last[:position] + last_char + permutation_of_all_chars_except_last[position:]
permutations.add(permutation)
return permutations
これは純粋な再帰と直感的なO(n!)時間の複雑さを持つアルゴリズムです。
public class words {
static String combinations;
public static List<String> arrlist=new ArrayList<>();
public static void main(String[] args) {
words obj = new words();
String str="premandl";
obj.getcombination(str, str.length()-1, "");
System.out.println(arrlist);
}
public void getcombination(String str, int charIndex, String output) {
if (str.length() == 0) {
arrlist.add(output);
return ;
}
if (charIndex == -1) {
return ;
}
String character = str.toCharArray()[charIndex] + "";
getcombination(str, --charIndex, output);
String remaining = "";
output = output + character;
remaining = str.substring(0, charIndex + 1) + str.substring(charIndex + 2);
getcombination(remaining, remaining.length() - 1, output);
}
}
これがJavaの実装です。
/* All Permutations of a String */
import Java.util.*;
import Java.lang.*;
import Java.io.*;
/* Complexity O(n*n!) */
class Ideone
{
public static ArrayList<String> strPerm(String str, ArrayList<String> list)
{
int len = str.length();
if(len==1){
list.add(str);
return list;
}
list = strPerm(str.substring(0,len-1),list);
int ls = list.size();
char ap = str.charAt(len-1);
for(int i=0;i<ls;i++){
String temp = list.get(i);
int tl = temp.length();
for(int j=0;j<=tl;j++){
list.add(temp.substring(0,j)+ap+temp.substring(j,tl));
}
}
while(true){
String temp = list.get(0);
if(temp.length()<len)
list.remove(temp);
else
break;
}
return list;
}
public static void main (String[] args) throws Java.lang.Exception
{
String str = "abc";
ArrayList<String> list = new ArrayList<>();
list = strPerm(str,list);
System.out.println("Total Permutations : "+list.size());
for(int i=0;i<list.size();i++)
System.out.println(list.get(i));
}
}