次のような文字列のn-gramを生成する方法:
String Input="This is my car."
この入力でn-gramを生成したい:
Input Ngram size = 3
出力は次のようになります。
This
is
my
car
This is
is my
my car
This is my
is my car
Javaでいくつかのアイデア、それを実装する方法、またはライブラリが利用できるかどうかを教えてください。
this NGramTokenizer を使用しようとしていますが、n-gramの文字シーケンスとn-gramのWordシーケンスが必要です。
ShingleFilter を探しています。
更新:リンクはバージョン3.0.2を指します。このクラスは、Luceneの新しいバージョンでは異なるパッケージに含まれている場合があります。
私はこれがあなたが望むことをするだろうと信じています:
import Java.util.*;
public class Test {
public static List<String> ngrams(int n, String str) {
List<String> ngrams = new ArrayList<String>();
String[] words = str.split(" ");
for (int i = 0; i < words.length - n + 1; i++)
ngrams.add(concat(words, i, i+n));
return ngrams;
}
public static String concat(String[] words, int start, int end) {
StringBuilder sb = new StringBuilder();
for (int i = start; i < end; i++)
sb.append((i > start ? " " : "") + words[i]);
return sb.toString();
}
public static void main(String[] args) {
for (int n = 1; n <= 3; n++) {
for (String ngram : ngrams(n, "This is my car."))
System.out.println(ngram);
System.out.println();
}
}
}
出力:
This
is
my
car.
This is
is my
my car.
This is my
is my car.
イテレータとして実装された「オンデマンド」ソリューション:
class NgramIterator implements Iterator<String> {
String[] words;
int pos = 0, n;
public NgramIterator(int n, String str) {
this.n = n;
words = str.split(" ");
}
public boolean hasNext() {
return pos < words.length - n + 1;
}
public String next() {
StringBuilder sb = new StringBuilder();
for (int i = pos; i < pos + n; i++)
sb.append((i > pos ? " " : "") + words[i]);
pos++;
return sb.toString();
}
public void remove() {
throw new UnsupportedOperationException();
}
}
このコードは、指定された長さのすべての文字列の配列を返します。
public static String[] ngrams(String s, int len) {
String[] parts = s.split(" ");
String[] result = new String[parts.length - len + 1];
for(int i = 0; i < parts.length - len + 1; i++) {
StringBuilder sb = new StringBuilder();
for(int k = 0; k < len; k++) {
if(k > 0) sb.append(' ');
sb.append(parts[i+k]);
}
result[i] = sb.toString();
}
return result;
}
例えば。
System.out.println(Arrays.toString(ngrams("This is my car", 2)));
//--> [This is, is my, my car]
System.out.println(Arrays.toString(ngrams("This is my car", 3)));
//--> [This is my, is my car]
public static void CreateNgram(ArrayList<String> list, int cutoff) {
try
{
NGramModel ngramModel = new NGramModel();
POSModel model = new POSModelLoader().load(new File("en-pos-maxent.bin"));
PerformanceMonitor perfMon = new PerformanceMonitor(System.err, "sent");
POSTaggerME tagger = new POSTaggerME(model);
perfMon.start();
for(int i = 0; i<list.size(); i++)
{
String inputString = list.get(i);
ObjectStream<String> lineStream = new PlainTextByLineStream(new StringReader(inputString));
String line;
while ((line = lineStream.read()) != null)
{
String whitespaceTokenizerLine[] = WhitespaceTokenizer.INSTANCE.tokenize(line);
String[] tags = tagger.tag(whitespaceTokenizerLine);
POSSample sample = new POSSample(whitespaceTokenizerLine, tags);
perfMon.incrementCounter();
String words[] = sample.getSentence();
if(words.length > 0)
{
for(int k = 2; k< 4; k++)
{
ngramModel.add(new StringList(words), k, k);
}
}
}
}
ngramModel.cutoff(cutoff, Integer.MAX_VALUE);
Iterator<StringList> it = ngramModel.iterator();
while(it.hasNext())
{
StringList strList = it.next();
System.out.println(strList.toString());
}
perfMon.stopAndPrintFinalResult();
}catch(Exception e)
{
System.out.println(e.toString());
}
}
N-gramを作成するためのコードは次のとおりです。この場合、n = 2、3。カットオフ値よりも小さい単語シーケンスのnグラムは、結果セットから無視されます。入力は文のリストであり、OpenNLPのツールを使用して解析します
/**
*
* @param sentence should has at least one string
* @param maxGramSize should be 1 at least
* @return set of continuous Word n-grams up to maxGramSize from the sentence
*/
public static List<String> generateNgramsUpto(String str, int maxGramSize) {
List<String> sentence = Arrays.asList(str.split("[\\W+]"));
List<String> ngrams = new ArrayList<String>();
int ngramSize = 0;
StringBuilder sb = null;
//sentence becomes ngrams
for (ListIterator<String> it = sentence.listIterator(); it.hasNext();) {
String Word = (String) it.next();
//1- add the Word itself
sb = new StringBuilder(Word);
ngrams.add(Word);
ngramSize=1;
it.previous();
//2- insert prevs of the Word and add those too
while(it.hasPrevious() && ngramSize<maxGramSize){
sb.insert(0,' ');
sb.insert(0,it.previous());
ngrams.add(sb.toString());
ngramSize++;
}
//go back to initial position
while(ngramSize>0){
ngramSize--;
it.next();
}
}
return ngrams;
}
呼び出し:
long startTime = System.currentTimeMillis();
ngrams = ToolSet.generateNgramsUpto("This is my car.", 3);
long stopTime = System.currentTimeMillis();
System.out.println("My time = "+(stopTime-startTime)+" ms with ngramsize = "+ngrams.size());
System.out.println(ngrams.toString());
出力:
Ngramsize = 9で私の時間= 1ミリ秒
これをチェックしてください:
public static void main(String[] args) {
NGram nGram = new NGram();
String[] tokens = "this is my car".split(" ");
int i = tokens.length;
List<String> ngrams = new ArrayList<>();
while (i >= 1){
ngrams.addAll(nGram.getNGram(tokens, i, new ArrayList<>()));
i--;
}
System.out.println(ngrams);
}
private List<String> getNGram(String[] tokens, int n, List<String> ngrams) {
StringBuilder strbldr = new StringBuilder();
if (tokens.length < n) {
return ngrams;
}else {
for (int i=0; i<n; i++){
strbldr.append(tokens[i]).append(" ");
}
ngrams.add(strbldr.toString().trim());
String[] newTokens = Arrays.copyOfRange(tokens, 1, tokens.length);
return getNGram(newTokens, n, ngrams);
}
}
シンプルな再帰関数、実行時間の改善。
public static void main(String[] args) {
String[] words = "This is my car.".split(" ");
for (int n = 0; n < 3; n++) {
List<String> list = ngrams(n, words);
for (String ngram : list) {
System.out.println(ngram);
}
System.out.println();
}
}
public static List<String> ngrams(int stepSize, String[] words) {
List<String> ngrams = new ArrayList<String>();
for (int i = 0; i < words.length-stepSize; i++) {
String initialWord = "";
int internalCount = i;
int internalStepSize = i + stepSize;
while (internalCount <= internalStepSize
&& internalCount < words.length) {
initialWord = initialWord+" " + words[internalCount];
++internalCount;
}
ngrams.add(initialWord);
}
return ngrams;
}