自己コーディング/面接の練習のために、(任意のサイズの)行列式を計算しようとしています。私の最初の試みは再帰を使用することであり、それは私を次の実装に導きます:
import Java.util.Scanner.*;
public class Determinant {
double A[][];
double m[][];
int N;
int start;
int last;
public Determinant (double A[][], int N, int start, int last){
this.A = A;
this.N = N;
this.start = start;
this.last = last;
}
public double[][] generateSubArray (double A[][], int N, int j1){
m = new double[N-1][];
for (int k=0; k<(N-1); k++)
m[k] = new double[N-1];
for (int i=1; i<N; i++){
int j2=0;
for (int j=0; j<N; j++){
if(j == j1)
continue;
m[i-1][j2] = A[i][j];
j2++;
}
}
return m;
}
/*
* Calculate determinant recursively
*/
public double determinant(double A[][], int N){
double res;
// Trivial 1x1 matrix
if (N == 1) res = A[0][0];
// Trivial 2x2 matrix
else if (N == 2) res = A[0][0]*A[1][1] - A[1][0]*A[0][1];
// NxN matrix
else{
res=0;
for (int j1=0; j1<N; j1++){
m = generateSubArray (A, N, j1);
res += Math.pow(-1.0, 1.0+j1+1.0) * A[0][j1] * determinant(m, N-1);
}
}
return res;
}
}
これまでのところ、それはすべて良好であり、正しい結果が得られます。ここで、複数のスレッドを使用してこの行列式の値を計算することにより、コードを最適化したいと思います。 Java Fork/Joinモデルを使用して並列化しようとしました。これが私のアプローチです:
@Override
protected Double compute() {
if (N < THRESHOLD) {
result = computeDeterminant(A, N);
return result;
}
for (int j1 = 0; j1 < N; j1++){
m = generateSubArray (A, N, j1);
ParallelDeterminants d = new ParallelDeterminants (m, N-1);
d.fork();
result += Math.pow(-1.0, 1.0+j1+1.0) * A[0][j1] * d.join();
}
return result;
}
public double computeDeterminant(double A[][], int N){
double res;
// Trivial 1x1 matrix
if (N == 1) res = A[0][0];
// Trivial 2x2 matrix
else if (N == 2) res = A[0][0]*A[1][1] - A[1][0]*A[0][1];
// NxN matrix
else{
res=0;
for (int j1=0; j1<N; j1++){
m = generateSubArray (A, N, j1);
res += Math.pow(-1.0, 1.0+j1+1.0) * A[0][j1] * computeDeterminant(m, N-1);
}
}
return res;
}
/*
* Main function
*/
public static void main(String args[]){
double res;
ForkJoinPool pool = new ForkJoinPool();
ParallelDeterminants d = new ParallelDeterminants();
d.inputData();
long starttime=System.nanoTime();
res = pool.invoke (d);
long EndTime=System.nanoTime();
System.out.println("Seq Run = "+ (EndTime-starttime)/100000);
System.out.println("the determinant valaue is " + res);
}
ただし、パフォーマンスを比較したところ、フォーク/結合アプローチのパフォーマンスは非常に悪く、マトリックスの次元が高いほど、(最初のアプローチと比較して)遅くなることがわかりました。オーバーヘッドはどこにありますか?誰かがこれを改善する方法に光を当てることができますか?
ForkJoinコードが遅い主な理由は、実際にはスレッドオーバーヘッドがスローされてシリアル化されるためです。fork/ joinを利用するには、1)最初にすべてのインスタンスをフォークし、次に2)結果を待つ必要があります。 「計算」のループを2つのループに分割します。1つはフォーク(たとえば、配列にParallelDeterminantsのインスタンスを格納する)で、もう1つは結果を収集します。
また、最も外側のレベルでのみフォークし、内側のレベルではフォークしないことをお勧めします。 O(N ^ 2)スレッドを作成する必要はありません。
このクラスを使用すると、行列の行列式を計算できます任意の次元で
このクラスは、さまざまなメソッドを使用して行列を三角行列にしますそして、その行列式を計算します。 500 x500以上の高次元のマトリックスに使用できます。このクラスの明るい面は、BigDecimalの結果を取得できるため、無限大がなく、常に正確な答えが得られるを取得できることです。ちなみに、さまざまな方法を使用し、再帰を回避することで、はるかに高速な方法で回答のパフォーマンスが向上しました。お役に立てば幸いです。
import Java.math.BigDecimal;
public class DeterminantCalc {
private double[][] matrix;
private int sign = 1;
DeterminantCalc(double[][] matrix) {
this.matrix = matrix;
}
public int getSign() {
return sign;
}
public BigDecimal determinant() {
BigDecimal deter;
if (isUpperTriangular() || isLowerTriangular())
deter = multiplyDiameter().multiply(BigDecimal.valueOf(sign));
else {
makeTriangular();
deter = multiplyDiameter().multiply(BigDecimal.valueOf(sign));
}
return deter;
}
/* receives a matrix and makes it triangular using allowed operations
on columns and rows
*/
public void makeTriangular() {
for (int j = 0; j < matrix.length; j++) {
sortCol(j);
for (int i = matrix.length - 1; i > j; i--) {
if (matrix[i][j] == 0)
continue;
double x = matrix[i][j];
double y = matrix[i - 1][j];
multiplyRow(i, (-y / x));
addRow(i, i - 1);
multiplyRow(i, (-x / y));
}
}
}
public boolean isUpperTriangular() {
if (matrix.length < 2)
return false;
for (int i = 0; i < matrix.length; i++) {
for (int j = 0; j < i; j++) {
if (matrix[i][j] != 0)
return false;
}
}
return true;
}
public boolean isLowerTriangular() {
if (matrix.length < 2)
return false;
for (int j = 0; j < matrix.length; j++) {
for (int i = 0; j > i; i++) {
if (matrix[i][j] != 0)
return false;
}
}
return true;
}
public BigDecimal multiplyDiameter() {
BigDecimal result = BigDecimal.ONE;
for (int i = 0; i < matrix.length; i++) {
for (int j = 0; j < matrix.length; j++) {
if (i == j)
result = result.multiply(BigDecimal.valueOf(matrix[i][j]));
}
}
return result;
}
// when matrix[i][j] = 0 it makes it's value non-zero
public void makeNonZero(int rowPos, int colPos) {
int len = matrix.length;
outer:
for (int i = 0; i < len; i++) {
for (int j = 0; j < len; j++) {
if (matrix[i][j] != 0) {
if (i == rowPos) { // found "!= 0" in it's own row, so cols must be added
addCol(colPos, j);
break outer;
}
if (j == colPos) { // found "!= 0" in it's own col, so rows must be added
addRow(rowPos, i);
break outer;
}
}
}
}
}
//add row1 to row2 and store in row1
public void addRow(int row1, int row2) {
for (int j = 0; j < matrix.length; j++)
matrix[row1][j] += matrix[row2][j];
}
//add col1 to col2 and store in col1
public void addCol(int col1, int col2) {
for (int i = 0; i < matrix.length; i++)
matrix[i][col1] += matrix[i][col2];
}
//multiply the whole row by num
public void multiplyRow(int row, double num) {
if (num < 0)
sign *= -1;
for (int j = 0; j < matrix.length; j++) {
matrix[row][j] *= num;
}
}
//multiply the whole column by num
public void multiplyCol(int col, double num) {
if (num < 0)
sign *= -1;
for (int i = 0; i < matrix.length; i++)
matrix[i][col] *= num;
}
// sort the cols from the biggest to the lowest value
public void sortCol(int col) {
for (int i = matrix.length - 1; i >= col; i--) {
for (int k = matrix.length - 1; k >= col; k--) {
double tmp1 = matrix[i][col];
double tmp2 = matrix[k][col];
if (Math.abs(tmp1) < Math.abs(tmp2))
replaceRow(i, k);
}
}
}
//replace row1 with row2
public void replaceRow(int row1, int row2) {
if (row1 != row2)
sign *= -1;
double[] tempRow = new double[matrix.length];
for (int j = 0; j < matrix.length; j++) {
tempRow[j] = matrix[row1][j];
matrix[row1][j] = matrix[row2][j];
matrix[row2][j] = tempRow[j];
}
}
//replace col1 with col2
public void replaceCol(int col1, int col2) {
if (col1 != col2)
sign *= -1;
System.out.printf("replace col%d with col%d, sign = %d%n", col1, col2, sign);
double[][] tempCol = new double[matrix.length][1];
for (int i = 0; i < matrix.length; i++) {
tempCol[i][0] = matrix[i][col1];
matrix[i][col1] = matrix[i][col2];
matrix[i][col2] = tempCol[i][0];
}
} }
このクラスは、ユーザーからn x nの行列を受け取り、その行列式を計算します。また、解と最終的な三角行列も示しています。
import Java.math.BigDecimal;
import Java.text.NumberFormat;
import Java.util.Scanner;
public class DeterminantTest {
public static void main(String[] args) {
String determinant;
//generating random numbers
/*int len = 300;
SecureRandom random = new SecureRandom();
double[][] matrix = new double[len][len];
for (int i = 0; i < len; i++) {
for (int j = 0; j < len; j++) {
matrix[i][j] = random.nextInt(500);
System.out.printf("%15.2f", matrix[i][j]);
}
}
System.out.println();*/
/*double[][] matrix = {
{1, 5, 2, -2, 3, 2, 5, 1, 0, 5},
{4, 6, 0, -2, -2, 0, 1, 1, -2, 1},
{0, 5, 1, 0, 1, -5, -9, 0, 4, 1},
{2, 3, 5, -1, 2, 2, 0, 4, 5, -1},
{1, 0, 3, -1, 5, 1, 0, 2, 0, 2},
{1, 1, 0, -2, 5, 1, 2, 1, 1, 6},
{1, 0, 1, -1, 1, 1, 0, 1, 1, 1},
{1, 5, 5, 0, 3, 5, 5, 0, 0, 6},
{1, -5, 2, -2, 3, 2, 5, 1, 1, 5},
{1, 5, -2, -2, 3, 1, 5, 0, 0, 1}
};
*/
double[][] matrix = menu();
DeterminantCalc deter = new DeterminantCalc(matrix);
BigDecimal det = deter.determinant();
determinant = NumberFormat.getInstance().format(det);
for (int i = 0; i < matrix.length; i++) {
for (int j = 0; j < matrix.length; j++) {
System.out.printf("%15.2f", matrix[i][j]);
}
System.out.println();
}
System.out.println();
System.out.printf("%s%s%n", "Determinant: ", determinant);
System.out.printf("%s%d", "sign: ", deter.getSign());
}
public static double[][] menu() {
Scanner scanner = new Scanner(System.in);
System.out.print("Matrix Dimension: ");
int dim = scanner.nextInt();
double[][] inputMatrix = new double[dim][dim];
System.out.println("Set the Matrix: ");
for (int i = 0; i < dim; i++) {
System.out.printf("%5s%d%n", "row", i + 1);
for (int j = 0; j < dim; j++) {
System.out.printf("M[%d][%d] = ", i + 1, j + 1);
inputMatrix[i][j] = scanner.nextDouble();
}
System.out.println();
}
scanner.close();
return inputMatrix;
}}