web-dev-qa-db-ja.com

AndroidのOpenCVテンプレートマッチングの例

私はOpenCVの初心者です。 OpenCVテンプレートマッチングを使用して、特定の画像のテンプレート画像と一致するサンプルAndroidアプリケーションを実行しようとしています。インターネットで検索しましたが、要件を満たす適切なAndroidまたはJavaコードが見つかりませんでした。しかし、私にはC++コードがあります。翻訳の仕方がわかりません。 http://docs.opencv.org/doc/tutorials/imgproc/histograms/template_matching/template_matching.html

適切なJavaまたはAndroidコードを見つけるのを手伝ってください。または、このC++コードをJavaに変換するのを手伝ってください。JavaをAndroidアプリケーション内で使用できます。

前もって感謝します。

C++コード

#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include <iostream>
#include <stdio.h>

using namespace std;
using namespace cv;

/// Global Variables
Mat img; Mat templ; Mat result;
char* image_window = "Source Image";
char* result_window = "Result window";

int match_method;
int max_Trackbar = 5;

/// Function Headers
void MatchingMethod( int, void* );

/** @function main */
int main( int argc, char** argv )
{
  /// Load image and template
  img = imread( argv[1], 1 );
  templ = imread( argv[2], 1 );

  /// Create windows
  namedWindow( image_window, CV_WINDOW_AUTOSIZE );
  namedWindow( result_window, CV_WINDOW_AUTOSIZE );

  /// Create Trackbar
  char* trackbar_label = "Method: \n 0: SQDIFF \n 1: SQDIFF NORMED \n 2: TM CCORR \n 3: TM CCORR NORMED \n 4: TM COEFF \n 5: TM COEFF NORMED";
  createTrackbar( trackbar_label, image_window, &match_method, max_Trackbar, MatchingMethod );

  MatchingMethod( 0, 0 );

  waitKey(0);
  return 0;
}

/**
 * @function MatchingMethod
 * @brief Trackbar callback
 */
void MatchingMethod( int, void* )
{
  /// Source image to display
  Mat img_display;
  img.copyTo( img_display );

  /// Create the result matrix
  int result_cols =  img.cols - templ.cols + 1;
  int result_rows = img.rows - templ.rows + 1;

  result.create( result_cols, result_rows, CV_32FC1 );

  /// Do the Matching and Normalize
  matchTemplate( img, templ, result, match_method );
  normalize( result, result, 0, 1, NORM_MINMAX, -1, Mat() );

  /// Localizing the best match with minMaxLoc
  double minVal; double maxVal; Point minLoc; Point maxLoc;
  Point matchLoc;

  minMaxLoc( result, &minVal, &maxVal, &minLoc, &maxLoc, Mat() );

  /// For SQDIFF and SQDIFF_NORMED, the best matches are lower values. For all the other methods, the higher the better
  if( match_method  == CV_TM_SQDIFF || match_method == CV_TM_SQDIFF_NORMED )
    { matchLoc = minLoc; }
  else
    { matchLoc = maxLoc; }

  /// Show me what you got
  rectangle( img_display, matchLoc, Point( matchLoc.x + templ.cols , matchLoc.y + templ.rows ), Scalar::all(0), 2, 8, 0 );
  rectangle( result, matchLoc, Point( matchLoc.x + templ.cols , matchLoc.y + templ.rows ), Scalar::all(0), 2, 8, 0 );

  imshow( image_window, img_display );
  imshow( result_window, result );

  return;
}
24
ssdehero

私はあなたと同じ問題に直面していました。 Javaにソースはありません。JavaDocでの検索とconst値のヒントのいくつかは後で記述しました。これはほとんどJavaで書かれた上記のサンプルコードです:

package opencv;

import org.opencv.core.Core;
import org.opencv.core.Core.MinMaxLocResult;
import org.opencv.core.CvType;
import org.opencv.core.Mat;
import org.opencv.core.Point;
import org.opencv.core.Scalar;
import org.opencv.highgui.Highgui;
import org.opencv.imgproc.Imgproc;

class MatchingDemo {
    public void run(String inFile, String templateFile, String outFile, int match_method) {
        System.out.println("\nRunning Template Matching");

        Mat img = Highgui.imread(inFile);
        Mat templ = Highgui.imread(templateFile);

        // / Create the result matrix
        int result_cols = img.cols() - templ.cols() + 1;
        int result_rows = img.rows() - templ.rows() + 1;
        Mat result = new Mat(result_rows, result_cols, CvType.CV_32FC1);

        // / Do the Matching and Normalize
        Imgproc.matchTemplate(img, templ, result, match_method);
        Core.normalize(result, result, 0, 1, Core.NORM_MINMAX, -1, new Mat());

        // / Localizing the best match with minMaxLoc
        MinMaxLocResult mmr = Core.minMaxLoc(result);

        Point matchLoc;
        if (match_method == Imgproc.TM_SQDIFF || match_method == Imgproc.TM_SQDIFF_NORMED) {
            matchLoc = mmr.minLoc;
        } else {
            matchLoc = mmr.maxLoc;
        }

        // / Show me what you got
        Core.rectangle(img, matchLoc, new Point(matchLoc.x + templ.cols(),
                matchLoc.y + templ.rows()), new Scalar(0, 255, 0));

        // Save the visualized detection.
        System.out.println("Writing "+ outFile);
        Highgui.imwrite(outFile, img);

    }
}

public class TemplateMatching {
    public static void main(String[] args) {
        System.loadLibrary("opencv_Java246");
        new MatchingDemo().run(args[0], args[1], args[2], Imgproc.TM_CCOEFF);
    }
}

ここで、次のオプションを使用してプログラムを実行します。lena.png template.png templatematch.pngそして、あなたは私と同じ結果を受け取るはずです。ランタイムがファイルにアクセスできること、そしてもちろん、opencv 2.4.6ライブラリがクラスパスに登録されていることを確認してください。

lena.pngtemplate.pngtemplatematch.png

44
micfra

OpenCV 3以上を使用する場合は、このコードを使用する必要があります

openCV 3にはHighguiがないため、代わりにimgcodecsを使用する必要があります。

import org.opencv.core.Core;
import org.opencv.core.Core.MinMaxLocResult;
import org.opencv.core.CvType;
import org.opencv.core.Mat;
import org.opencv.core.Point;
import org.opencv.core.Scalar;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.imgproc.Imgproc;

class MatchingDemo {
    public void run(String inFile, String templateFile, String outFile,
        int match_method) {
    System.out.println("\nRunning Template Matching");

    Mat img = Imgcodecs.imread(inFile);
    Mat templ = Imgcodecs.imread(templateFile);

    // / Create the result matrix
    int result_cols = img.cols() - templ.cols() + 1;
    int result_rows = img.rows() - templ.rows() + 1;
    Mat result = new Mat(result_rows, result_cols, CvType.CV_32FC1);

    // / Do the Matching and Normalize
    Imgproc.matchTemplate(img, templ, result, match_method);
    Core.normalize(result, result, 0, 1, Core.NORM_MINMAX, -1, new Mat());

    // / Localizing the best match with minMaxLoc
    MinMaxLocResult mmr = Core.minMaxLoc(result);

    Point matchLoc;
    if (match_method == Imgproc.TM_SQDIFF
            || match_method == Imgproc.TM_SQDIFF_NORMED) {
        matchLoc = mmr.minLoc;
    } else {
        matchLoc = mmr.maxLoc;
    }

    // / Show me what you got
    Imgproc.rectangle(img, matchLoc, new Point(matchLoc.x + templ.cols(),
            matchLoc.y + templ.rows()), new Scalar(0, 255, 0));

    // Save the visualized detection.
    System.out.println("Writing " + outFile);
    Imgcodecs.imwrite(outFile, img);

}
}

public class TemplateMatching {

public static void main(String[] args) {
    System.loadLibrary("opencv_Java300");
    new MatchingDemo().run(args[0], args[1], args[2], Imgproc.TM_CCOEFF);
}

}
4
daaniaal