私はBigInteger
番号を持っています、例えば2を超えています64。ここで、そのBigInteger
数の対数を計算したいのですが、メソッドBigInteger.log()
が存在しません。大きなBigInteger
値の(自然)対数を計算するにはどうすればよいですか?
任意の大きさの整数をサポートしたい場合、それを行うのは安全ではありません
Math.log(bigInteger.doubleValue());
引数がdouble
の範囲(約2 ^ 1024または10 ^ 308、つまり小数点以下300桁を超える)を超えると失敗するためです。
これがメソッドを提供する私自身のクラスです
double logBigInteger(BigInteger val);
double logBigDecimal(BigDecimal val);
BigDecimal expBig(double exponent);
BigDecimal powBig(double a, double b);
BigDecimal/BigIntegerが大きすぎて(または小さすぎて)double
型として表現できない場合でも、これらは安全に機能します。
import Java.math.*;
/**
* Provides some mathematical operations on {@code BigDecimal} and {@code BigInteger}.
* Static methods.
*/
public class BigMath {
public static final double LOG_2 = Math.log(2.0);
public static final double LOG_10 = Math.log(10.0);
// numbers greater than 10^MAX_DIGITS_10 or e^MAX_DIGITS_E are considered unsafe ('too big') for floating point operations
private static final int MAX_DIGITS_10 = 294;
private static final int MAX_DIGITS_2 = 977; // ~ MAX_DIGITS_10 * LN(10)/LN(2)
private static final int MAX_DIGITS_E = 677; // ~ MAX_DIGITS_10 * LN(10)
/**
* Computes the natural logarithm of a {@link BigInteger}
* <p>
* Works for really big integers (practically unlimited), even when the argument
* falls outside the {@code double} range
* <p>
*
*
* @param val Argument
* @return Natural logarithm, as in {@link Java.lang.Math#log(double)}<br>
* {@code Nan} if argument is negative, {@code NEGATIVE_INFINITY} if zero.
*/
public static double logBigInteger(BigInteger val) {
if (val.signum() < 1)
return val.signum() < 0 ? Double.NaN : Double.NEGATIVE_INFINITY;
int blex = val.bitLength() - MAX_DIGITS_2; // any value in 60..1023 works here
if (blex > 0)
val = val.shiftRight(blex);
double res = Math.log(val.doubleValue());
return blex > 0 ? res + blex * LOG_2 : res;
}
/**
* Computes the natural logarithm of a {@link BigDecimal}
* <p>
* Works for really big (or really small) arguments, even outside the double range.
*
* @param val Argument
* @return Natural logarithm, as in {@link Java.lang.Math#log(double)}<br>
* {@code Nan} if argument is negative, {@code NEGATIVE_INFINITY} if zero.
*/
public static double logBigDecimal(BigDecimal val) {
if (val.signum() < 1)
return val.signum() < 0 ? Double.NaN : Double.NEGATIVE_INFINITY;
int digits = val.precision() - val.scale();
if (digits < MAX_DIGITS_10 && digits > -MAX_DIGITS_10)
return Math.log(val.doubleValue());
else
return logBigInteger(val.unscaledValue()) - val.scale() * LOG_10;
}
/**
* Computes the exponential function, returning a {@link BigDecimal} (precision ~ 16).
* <p>
* Works for very big and very small exponents, even when the result
* falls outside the double range.
*
* @param exponent Any finite value (infinite or {@code Nan} throws {@code IllegalArgumentException})
* @return The value of {@code e} (base of the natural logarithms) raised to the given exponent,
* as in {@link Java.lang.Math#exp(double)}
*/
public static BigDecimal expBig(double exponent) {
if (!Double.isFinite(exponent))
throw new IllegalArgumentException("Infinite not accepted: " + exponent);
// e^b = e^(b2+c) = e^b2 2^t with e^c = 2^t
double bc = MAX_DIGITS_E;
if (exponent < bc && exponent > -bc)
return new BigDecimal(Math.exp(exponent), MathContext.DECIMAL64);
boolean neg = false;
if (exponent < 0) {
neg = true;
exponent = -exponent;
}
double b2 = bc;
double c = exponent - bc;
int t = (int) Math.ceil(c / LOG_10);
c = t * LOG_10;
b2 = exponent - c;
if (neg) {
b2 = -b2;
t = -t;
}
return new BigDecimal(Math.exp(b2), MathContext.DECIMAL64).movePointRight(t);
}
/**
* Same as {@link Java.lang.Math#pow(double,double)} but returns a {@link BigDecimal} (precision ~ 16).
* <p>
* Works even for outputs that fall outside the {@code double} range.
* <br>
* The only limitation is that {@code b * log(a)} cannot exceed the {@code double} range.
*
* @param a Base. Should be non-negative
* @param b Exponent. Should be finite (and non-negative if base is zero)
* @return Returns the value of the first argument raised to the power of the second argument.
*/
public static BigDecimal powBig(double a, double b) {
if (!(Double.isFinite(a) && Double.isFinite(b)))
throw new IllegalArgumentException(
Double.isFinite(b) ? "base not finite: a=" + a : "exponent not finite: b=" + b);
if (b == 0)
return BigDecimal.ONE;
else if (b == 1)
return BigDecimal.valueOf(a);
if (a <= 0) {
if (a == 0) {
if (b >= 0)
return BigDecimal.ZERO;
else
throw new IllegalArgumentException("0**negative = infinite b=" + b);
} else
throw new IllegalArgumentException("negative base a=" + a);
}
double x = b * Math.log(a);
if (Math.abs(x) < MAX_DIGITS_E)
return BigDecimal.valueOf(Math.pow(a, b));
else
return expBig(x);
}
}
私はグーグルからいくつかの助けを得ましたが、それは次の方法で分解できるので、明らかにあなたはあなたの非常に大きなBigInteger数に直接ログを適用する必要はありません:
928 = 1000 * 0.928
lg 928 = lg 1000 + lg 0.928 = 3 + lg 0.928
したがって、あなたの問題は、任意の精度の向上を可能にする対数の計算/近似に還元されます、多分math.stackexchange.com?
これをBigDecimalliekに変換します。
new BigDecimal(val); // where val is a BigInteger
BigDecimalUtils からログを呼び出します:D
どのくらい正確である必要がありますか? 15桁の精度しか必要ない場合は、次のことができます。
BigInteger bi =
double log = Math.log(bi.doubleValue());
これは、最大1023ビットの値で機能します。その後、値はもうdoubleに収まりません。
Google Guavaを使用でき、基数2または基数10のログのみが必要な場合は、Guavaの BigIntegerMath
クラスのメソッドを使用できます。