web-dev-qa-db-ja.com

Javaカーブフィッティングライブラリ

一連の2次元の点を取得して、曲線をモデル化するより大きな一連の点を返すことができる単純なライブラリを見つけたいと思っています。基本的に、JFreeChartからこのサンプルのようなカーブフィッティングの効果を得たいと思います。

enter image description here

JFreeChartの問題は、コードがこのタイプのAPIを提供しないことです。ソースを見ても、アルゴリズムは実際の図面と緊密に結合されています。

19
Russell Leggett

Apache Commons Math には、素晴らしい一連のアルゴリズム、特に「SplineInterpolator」があります。 APIドキュメント を参照してください。

Groovyからalpha(x)、beta(x)の補間関数を呼び出す例:

package example.com

import org.Apache.commons.math3.analysis.interpolation.SplineInterpolator
import org.Apache.commons.math3.analysis.polynomials.PolynomialSplineFunction

import statec.Extrapolate.Value;

class Interpolate {

    enum Value {
        ALPHA, BETA
    }

    def static xValues     = [
        -284086,
        -94784,
        31446,
        354837,
        667782,
        982191
    ]
    def static alphaValues = [
        71641,
        78245,
        80871,
        94045,
        105780,
        119616
    ]
    def static betaValues = [
        95552,
        103413,
        108667,
        128456,
        144686,
        171953
    ]

    static def getValueByName(Value value, int i) {
        def res
        switch (value) {
            case Value.ALPHA:
                res = alphaValues[i]
                break
            case Value.BETA:
                res = betaValues[i]
                break
            default:
                assert false
        }
        return res
    }

    static PolynomialSplineFunction interpolate(Value value) {
        def yValues = []
        int i = 0
        xValues.each {
            def y = getValueByName(value, i++)
            yValues << (y as Double)
        }
        SplineInterpolator spi = new SplineInterpolator()
        return spi.interpolate(xValues as double[], yValues as double[])
    }

    static void main(def argv) {
        //
        // Create a map mapping a Value instance to its interpolating function
        //
        def interpolations = [:]
        Value.values().each {
            interpolations[it] = interpolate(it)
        }
        //
        // Create an array of new x values to compute display.
        // Make sure the last "original" value is in there!
        // Note that the newxValues MUST stay within the range of the original xValues!
        //
        def newxValues = []
        for (long x = xValues[0] ; x < xValues[-1] ; x+=25000) {
            newxValues << x
        }
        newxValues << xValues[-1]
        //
        // Write interpolated values for ALPHA and BETA, adding the original values in columns 4 and 5
        //
        System.out << "X , ALPHA, BETA, X_orig, ALPHA_orig, BETA_orig" << "\n"
        int origIndex = 0
        newxValues.each { long x ->
            def alpha_ipol = interpolations[Value.ALPHA].value(x)
            def beta_ipol  = interpolations[Value.BETA].value(x)
            String out = "${x} ,  ${alpha_ipol} , ${beta_ipol}"
            if (x >= xValues[origIndex]) {
                out += ", ${xValues[origIndex]}, ${alphaValues[origIndex]}, ${betaValues[origIndex]}"
                origIndex++
            }
            System.out << out << "\n"
        }
    }
}

The resulting output, plotted in LibreOffice Calc

そして今、それが楽しいので、EXTRAPOLATIONSのトピック外の例です。ここでは、上記と同じデータを使用しますが、2次多項式を使用して外挿します。そしてもちろん、適切なクラス。繰り返しますが、Groovyでは:

package example.com

import org.Apache.commons.math3.analysis.polynomials.PolynomialFunction
import org.Apache.commons.math3.fitting.PolynomialFitter
import org.Apache.commons.math3.fitting.WeightedObservedPoint
import org.Apache.commons.math3.optim.SimpleVectorValueChecker
import org.Apache.commons.math3.optim.nonlinear.vector.jacobian.GaussNewtonOptimizer

class Extrapolate {

    enum Value {
        ALPHA, BETA
    }

    def static xValues     = [
        -284086,
        -94784,
        31446,
        354837,
        667782,
        982191
    ]
    def static alphaValues = [
        71641,
        78245,
        80871,
        94045,
        105780,
        119616
    ]
    def static betaValues = [
        95552,
        103413,
        108667,
        128456,
        144686,
        171953
    ]

    static def getValueByName(Value value, int i) {
        def res
        switch (value) {
            case Value.ALPHA:
                res = alphaValues[i]
                break
            case Value.BETA:
                res = betaValues[i]
                break
            default:
                assert false
        }
        return res
    }

    static PolynomialFunction extrapolate(Value value) {
        //
        // how to check that we converged
        //
        def checker
        A: {
            double relativeThreshold = 0.01
            double absoluteThreshold = 10
            int maxIter = 1000
            checker = new SimpleVectorValueChecker(relativeThreshold, absoluteThreshold, maxIter)
        }
        //
        // how to fit
        //
        def fitter
        B: {
            def useLUdecomposition = true
            def optimizer = new GaussNewtonOptimizer(useLUdecomposition, checker)
            fitter = new PolynomialFitter(optimizer)
            int i = 0
            xValues.each {
                def weight = 1.0
                def y = getValueByName(value, i++)
                fitter.addObservedPoint(new WeightedObservedPoint(weight, it, y))
            }
        }
        //
        // fit using a 2-degree polynomial; guess at a linear function at first
        // "a0 + (a1 * x) + (a2 * x²)"; a linear guess mean a2 == 0
        //
        def params
        C: {
            def mStart = getValueByName(value,0)
            def mEnd   = getValueByName(value,-1)
            def xStart = xValues[0]
            def xEnd   = xValues[-1]
            def a2 = 0
            def a1 = (mEnd - mStart) / (xEnd - xStart) // slope
            def a0 = mStart - (xStart * a1) // 0-intersection
            def guess = [a0 , a1 , a2]
            params = fitter.fit(guess as double[])
        }
        //
        // make polynomial
        //
        return new PolynomialFunction(params)
    }

    static void main(def argv) {
        //
        // Create a map mapping a Value instance to its interpolating function
        //
        def extrapolations = [:]
        Value.values().each {
            extrapolations[it] = extrapolate(it)
        }
        //
        // New x, this times reaching out past the range of the original xValues
        //
        def newxValues = []
        for (long x = xValues[0] - 400000L ; x < xValues[-1] + 400000L ; x += 10000) {
            newxValues << x
        }
        //
        // Write the extrapolated series ALPHA and BETA, adding the original values in columns 4 and 5
        //
        System.out << "X , ALPHA, BETA, X_orig, ALPHA_orig, BETA_orig" << "\n"
        int origIndex = 0
        newxValues.each { long x ->
            def alpha_xpol = extrapolations[Value.ALPHA].value(x)
            def beta_xpol  = extrapolations[Value.BETA].value(x)
            String out = "${x} ,  ${alpha_xpol} , ${beta_xpol}"
            if (origIndex < xValues.size() && x >= xValues[origIndex]) {
                out += ", ${xValues[origIndex]}, ${alphaValues[origIndex]}, ${betaValues[origIndex]}"
                origIndex++
            }
            System.out << out << "\n"
        }
    }
}

The resulting output, plotted in LibreOffice Calc

7
David Tonhofer

私はそれを行ったことがありませんが、グーグルですばやく検索すると、ベジェ曲線が http://Java.Sun.com/j2se/1.5.0/docs/api/Java/awt/geom/QuadCurve2D .Double.html

次に、この曲線からPathIterator()を取得できます。これにより、ドキュメントに記載されているとおり、「形状境界の座標」が取得されます。これは、私が探しているものだと思います。

0
jbasko