ニューラルネットワークの実行時間が非常に長いため、convn netのk分割交差検証は真剣に行われていないようです。私は小さなデータセットを持っていて、与えられた例 here を使用してk分割交差検証を行うことに興味があります。出来ますか?ありがとう。
データジェネレーターで画像を使用している場合、Kerasとscikit-learnで10分割交差検証を行う1つの方法を次に示します。戦略は、各フォールドに従ってファイルをtraining
、validation
、およびtest
サブフォルダーにコピーすることです。
import numpy as np
import os
import pandas as pd
import shutil
from sklearn.model_selection import StratifiedKFold
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
# used to copy files according to each fold
def copy_images(df, directory):
destination_directory = "{path to your data directory}/" + directory
print("copying {} files to {}...".format(directory, destination_directory))
# remove all files from previous fold
if os.path.exists(destination_directory):
shutil.rmtree(destination_directory)
# create folder for files from this fold
if not os.path.exists(destination_directory):
os.makedirs(destination_directory)
# create subfolders for each class
for c in set(list(df['class'])):
if not os.path.exists(destination_directory + '/' + c):
os.makedirs(destination_directory + '/' + c)
# copy files for this fold from a directory holding all the files
for i, row in df.iterrows():
try:
# this is the path to all of your images kept together in a separate folder
path_from = "{path to all of your images}"
path_from = path_from + "{}.jpg"
path_to = "{}/{}".format(destination_directory, row['class'])
# move from folder keeping all files to training, test, or validation folder (the "directory" argument)
shutil.copy(path_from.format(row['filename']), path_to)
except Exception, e:
print("Error when copying {}: {}".format(row['filename'], str(e)))
# dataframe containing the filenames of the images (e.g., GUID filenames) and the classes
df = pd.read_csv('{path to your data}.csv')
df_y = df['class']
df_x = df
del df_x['class']
skf = StratifiedKFold(n_splits = 10)
total_actual = []
total_predicted = []
total_val_accuracy = []
total_val_loss = []
total_test_accuracy = []
for i, (train_index, test_index) in enumerate(skf.split(df_x, df_y)):
x_train, x_test = df_x.iloc[train_index], df_x.iloc[test_index]
y_train, y_test = df_y.iloc[train_index], df_y.iloc[test_index]
train = pd.concat([x_train, y_train], axis=1)
test = pd.concat([x_test, y_test], axis = 1)
# take 20% of the training data from this fold for validation during training
validation = train.sample(frac = 0.2)
# make sure validation data does not include training data
train = train[~train['filename'].isin(list(validation['filename']))]
# copy the images according to the fold
copy_images(train, 'training')
copy_images(validation, 'validation')
copy_images(test, 'test')
print('**** Running fold '+ str(i))
# here you call a function to create and train your model, returning validation accuracy and validation loss
val_accuracy, val_loss = create_train_model();
# append validation accuracy and loss for average calculation later on
total_val_accuracy.append(val_accuracy)
total_val_loss.append(val_loss)
# here you will call a predict() method that will predict the images on the "test" subfolder
# this function returns the actual classes and the predicted classes in the same order
actual, predicted = predict()
# append accuracy from the predictions on the test data
total_test_accuracy.append(accuracy_score(actual, predicted))
# append all of the actual and predicted classes for your final evaluation
total_actual = total_actual + actual
total_predicted = total_predicted + predicted
# this is optional, but you can also see the performance on each fold as the process goes on
print(classification_report(total_actual, total_predicted))
print(confusion_matrix(total_actual, total_predicted))
print(classification_report(total_actual, total_predicted))
print(confusion_matrix(total_actual, total_predicted))
print("Validation accuracy on each fold:")
print(total_val_accuracy)
print("Mean validation accuracy: {}%".format(np.mean(total_val_accuracy) * 100))
print("Validation loss on each fold:")
print(total_val_loss)
print("Mean validation loss: {}".format(np.mean(total_val_loss)))
print("Test accuracy on each fold:")
print(total_test_accuracy)
print("Mean test accuracy: {}%".format(np.mean(total_test_accuracy) * 100))
データジェネレーターを使用している場合、predict()関数で、テスト時にbatch_size
of 1
を使用することで予測を同じ順序に保つ唯一の方法は次のとおりです。
generator = ImageDataGenerator().flow_from_directory(
'{path to your data directory}/test',
target_size = (img_width, img_height),
batch_size = 1,
color_mode = 'rgb',
# categorical for a multiclass problem
class_mode = 'categorical',
# this will also ensure the same order
shuffle = False)
このコードを使用すると、データジェネレーターを使用して10倍の交差検証を実行できました(そのため、すべてのファイルをメモリに保持する必要がありませんでした)。何百万もの画像がある場合、これは多くの作業になる可能性があり、テストセットが大きい場合はbatch_size = 1
がボトルネックになる可能性がありますが、私のプロジェクトではこれはうまくいきました。