問題があります(/(ㄒoㄒ)/ ~~)。コレクションAが
{
"_id" : ObjectId("582abcd85d2dfa67f44127e1"),
"bid" : [
DBRef("B", ObjectId("582abcd85d2dfa67f44127e0")),
DBRef("B", ObjectId("582abcd85d2dfa67f44127e1"))
]
}
およびコレクションB:
{
"_id" : ObjectId("582abcd85d2dfa67f44127e0"),
"status" : NumberInt(1),
"seq" : NumberInt(0)
},
{
"_id" : ObjectId("582abcd85d2dfa67f44127e1"),
"status" : NumberInt(1),
"seq" : NumberInt(0)
}
「入札」を$検索する方法がわかりません。私は試した
db.A.aggregate(
[
{$unwind: {path: "$bid"}},
{$lookup: {from: "B", localField: "bid", foreignField: "_id", as: "bs"}},
]
)
そして
db.A.aggregate(
[
{$unwind: {path: "$bid"}},
{$lookup: {from: "B", localField: "bid.$id", foreignField: "_id", as: "bs"}},
]
)
しかし、それは機能しません。誰でも手伝ってくれる?ありがとう。
実際、他の答えは間違っています。アグリゲーター内のDBrefフィールドでルックアップを実行することは可能であり、そのためにmapreduceは必要ありません。
db.A.aggregate([
{
$project: {
B_fk: {
$map: {
input: {
$map: {
input:"$bid",
in: {
$arrayElemAt: [{$objectToArray: "$$this"}, 1]
},
}
},
in: "$$this.v"}},
}
},
{
$lookup: {
from:"B",
localField:"B_fk",
foreignField:"_id",
as:"B"
}
])
結果
{
"_id" : ObjectId("59bb79df1e9c00162566f581"),
"B_fk" : null,
"B" : [ ]
},
{
"_id" : ObjectId("582abcd85d2dfa67f44127e1"),
"B_fk" : [
ObjectId("582abcd85d2dfa67f44127e0"),
ObjectId("582abcd85d2dfa67f44127e1")
],
"B" : [
{
"_id" : ObjectId("582abcd85d2dfa67f44127e0"),
"status" : NumberInt("1"),
"seq" : NumberInt("0")
}
]
}
$ mapを使用してDBRefをループし、各DBrefを配列に分割し、$ idフィールドのみを保持し、$$ this.vを使用してk:v形式を削除し、ObjectIdのみを保持して残りをすべて削除します。 ObjectIdを検索できるようになりました。
アグリゲーター内では、DBRef BSONタイプは、2つまたは3つのフィールド(ref、id、およびdb)を持つオブジェクトのように処理できます。
もしあなたがそうするなら:
db.A.aggregate([
{
$project: {
First_DBref_as_array: {$objectToArray:{$arrayElemAt:["$bid",0]}},
Second_DBref_as_array: {$objectToArray:{$arrayElemAt:["$bid",1]}},
}
},
])
これが結果です:
{
"_id" : ObjectId("582abcd85d2dfa67f44127e1"),
"First_DBref_as_array : [
{
"k" : "$ref",
"v" : "B"
},
{
"k" : "$id",
"v" : ObjectId("582abcd85d2dfa67f44127e0")
}
],
"Second_DBref_as_array" : [
{
"k" : "$ref",
"v" : "B"
},
{
"k" : "$id",
"v" : ObjectId("582abcd85d2dfa67f44127e0")
}
]
}
Dbrefを配列に変換したら、次のように、インデックス1の値のみをクエリすることで、不要なフィールドを取り除くことができます。
db.A.aggregate([
{
$project: {
First_DBref_as_array: {$arrayElemAt: [{$objectToArray:{$arrayElemAt:["$bid",0]}},1]},
Second_DBref_as_array: {$arrayElemAt: [{$objectToArray:{$arrayElemAt:["$bid",0]}},1]},
}
},
])
結果:
{
"_id" : ObjectId("582abcd85d2dfa67f44127e1"),
"First_DBref_as_array" : {
"k" : "$id",
"v" : ObjectId("582abcd85d2dfa67f44127e0")
},
"Second_DBref_as_array" : {
"k" : "$id",
"v" : ObjectId("582abcd85d2dfa67f44127e0")
}
}
次に、次のように、「$ myvalue.v」をポイントすることで、最終的に必要な値に到達できます。
db.A.aggregate([
{
$project: {
first_DBref_as_array: {$arrayElemAt: [{$objectToArray:{$arrayElemAt:["$bid",0]}},1]},
second_DBref_as_array: {$arrayElemAt: [{$objectToArray:{$arrayElemAt:["$bid",0]}},1]},
}
},
{
$project: {
first_DBref_as_ObjectId: "$first_DBref_as_array.v",
second_DBref_as_ObjectId: "$second_DBref_as_array.v"
}
}
])
結果:
{
"_id" : ObjectId("582abcd85d2dfa67f44127e1"),
"first_DBref_as_ObjectId" : ObjectId("582abcd85d2dfa67f44127e0"),
"second_DBref_as_ObjectId" : ObjectId("582abcd85d2dfa67f44127e0")
}
明らかに、通常のパイプラインでは、ネストされた$ mapを使用してこれらの冗長な手順をすべて行う必要はなく、一度に同じ結果を得ることができます。
db.A.aggregate([
{
$project: {
B_fk: { $map : {input: { $map: { input:"$bid",
in: { $arrayElemAt: [{$objectToArray: "$$this"}, 1 ]}, } },
in: "$$this.v"}},
}
},
])
結果:
{
"_id" : ObjectId("582abcd85d2dfa67f44127e1"),
"B_fk" : [
ObjectId("582abcd85d2dfa67f44127e0"),
ObjectId("582abcd85d2dfa67f44127e1")
]
}
お気軽にお尋ねください。
MongoDB 3.4以降、これは不可能です。 $ match ステージを除いて、DBRefを集計パイプラインで使用することはできません。
DBRefを削除して、手動参照に切り替えることを強くお勧めします。ただし、本当にDBRefを維持する必要がある場合は、(醜い)解決策を次に示します。
最初に、「C」という名前の新しいコレクションを作成します。ここで、DBRefはmapReduceを使用してIDに置き換えられます。
db.A.mapReduce(
function() {
var key = this._id;
var value = [];
for ( var index = 0; index < this.bid.length; index++){
value.Push(this.bid[index].$id);
}
emit(key, value);
},
function(key,values) {
return values;
},
{
"query": {},
"out": "C"
}
)
次に、新しい「C」コレクションで集計クエリを実行します。
db.C.aggregate([
{
$unwind:"$value"
},
{
$lookup:{
from:"B",
localField:"value",
foreignField:"_id",
as:"bs"
}
}
]);
出力:
{
"_id":ObjectId("582abcd85d2dfa67f44127e1"),
"value":ObjectId("582abcd85d2dfa67f44127e0"),
"bs":[
{
"_id":ObjectId("582abcd85d2dfa67f44127e0"),
"status":1,
"seq":0
}
]
}{
"_id":ObjectId("582abcd85d2dfa67f44127e1"),
"value":ObjectId("582abcd85d2dfa67f44127e1"),
"bs":[
{
"_id":ObjectId("582abcd85d2dfa67f44127e1"),
"status":1,
"seq":0
}
]
}