web-dev-qa-db-ja.com

MYSQL OR対INパフォーマンス

私は次の間にパフォーマンスに関して何か違いがあるのだろうかと思っています

SELECT ... FROM ... WHERE someFIELD IN(1,2,3,4)

SELECT ... FROM ... WHERE someFIELD between  0 AND 5

SELECT ... FROM ... WHERE someFIELD = 1 OR someFIELD = 2 OR someFIELD = 3 ... 

または、コンパイラがコードを最適化するのと同じ方法でMySQLがSQLを最適化しますか?

編集:コメントに記載されている理由により、AND 'sをOR' sに変更しました。

167
Scott

これを確実に知る必要があるため、両方の方法のベンチマークを行いました。 INは、ORを使用するよりもずっと高速であることが一貫してわかりました。

「意見」を述べる人を信じないでください。科学はすべてテストと証拠に関するものです。

同等のクエリの1000倍のループを実行しました(一貫性を保つため、sql_no_cacheを使用しました)。

IN:2.34969592094s

OR:5.83781504631s

更新:
(6年前と同じように、元のテストのソースコードはありませんが、このテストと同じ範囲の結果を返します)

これをテストするためのサンプルコードを要求する場合、最も簡単な使用例を次に示します。 Eloquentを使用して構文を簡素化すると、同等の生のSQLでも同じことが実行されます。

$t = microtime(true); 
for($i=0; $i<10000; $i++):
$q = DB::table('users')->where('id',1)
    ->orWhere('id',2)
    ->orWhere('id',3)
    ->orWhere('id',4)
    ->orWhere('id',5)
    ->orWhere('id',6)
    ->orWhere('id',7)
    ->orWhere('id',8)
    ->orWhere('id',9)
    ->orWhere('id',10)
    ->orWhere('id',11)
    ->orWhere('id',12)
    ->orWhere('id',13)
    ->orWhere('id',14)
    ->orWhere('id',15)
    ->orWhere('id',16)
    ->orWhere('id',17)
    ->orWhere('id',18)
    ->orWhere('id',19)
    ->orWhere('id',20)->get();
endfor;
$t2 = microtime(true); 
echo $t."\n".$t2."\n".($t2-$t)."\n";

1482080514.3635
1482080517.3713
.0078368186951

$t = microtime(true); 
for($i=0; $i<10000; $i++): 
$q = DB::table('users')->whereIn('id',[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20])->get(); 
endfor; 
$t2 = microtime(true); 
echo $t."\n".$t2."\n".($t2-$t)."\n";

1482080534.0185
1482080536.178
2.1595389842987

239
Cyril

また、将来のGoogle社員向けのテストも行いました。返された結果の総数は10000のうち7264です

SELECT * FROM item WHERE id = 1 OR id = 2 ... id = 10000

このクエリには0.1239秒かかりました

SELECT * FROM item WHERE id IN (1,2,3,...10000)

このクエリには0.0433秒かかりました

INORより3倍高速です

66
Ergec

BETWEENは次のように変換する必要があるため、より高速になると思います。

Field >= 0 AND Field <= 5

とにかく、INはORステートメントの束に変換されることを理解しています。 INの値は使いやすさです。 (各列名を複数回入力する必要がなく、既存のロジックでの使用が容易になります。INは1つのステートメントであるため、AND/OR優先順位について心配する必要はありません。ORの束ステートメントを括弧で囲み、それらが1つの条件として評価されるようにする必要があります。

あなたの質問に対する唯一の本当の答えはPROFILE YOUR QUERIESです。次に、特定の状況で何が最適かを知ることができます。

16
beach

それはあなたが何をしているかに依存します。範囲の広さ、データ型は何ですか(例では数値データ型を使用していますが、質問は多くの異なるデータ型にも適用できます)。

これは、両方の方法でクエリを記述したいインスタンスです。それを動作させてから、EXPLAINを使用して実行の違いを見つけます。

これには具体的な答えがあると確信していますが、実際には、これが私の質問に対する答えを見つける方法です。

これはいくつかの助けになるかもしれません: http://forge.mysql.com/wiki/Top10SQLPerformanceTips

よろしく、
フランク

11
Frank V

受け入れられた答えは理由を説明しません。

以下は、High Performance MySQL、第3版からの引用です。

多くのデータベースサーバーでは、IN()は複数のOR句の同義語です。これら2つの句は論理的に同等であるためです。 IN()リストの値をソートし、高速バイナリ検索を使用して値がリストにあるかどうかを確認するMySQLではそうではありません。これはリストのサイズがO(Log n)であるのに対し、同等の一連のOR句はリストのサイズがO(n)です(つまり、大きなリスト)

5
Jacob

または最も遅くなります。 INとBETWEENのどちらが速いかはデータによって異なりますが、BETWEENはインデックスから範囲を単純に取得できるため、通常は高速になると予想されます(someFieldにインデックスが付けられている場合)。

3
Greg

安全だと思ったとき...

eq_range_index_dive_limitの価値は何ですか?特に、IN句に含まれるアイテムの数はもっと多くなりますか、それとも少なくなりますか?

これにはベンチマークは含まれませんが、内部の仕組みを少し覗き込みます。ツールを使用して、何が起こっているのかを確認しましょう-オプティマイザートレース。

クエリ:SELECT * FROM canada WHERE id ...

つの値のOR、トレースの一部は次のようになります。

       "condition_processing": {
          "condition": "WHERE",
          "original_condition": "((`canada`.`id` = 296172) or (`canada`.`id` = 295093) or (`canada`.`id` = 293626))",
          "steps": [
            {
              "transformation": "equality_propagation",
              "resulting_condition": "(multiple equal(296172, `canada`.`id`) or multiple equal(295093, `canada`.`id`) or multiple equal(293626, `canada`.`id`))"
            },

...

              "analyzing_range_alternatives": {
                "range_scan_alternatives": [
                  {
                    "index": "id",
                    "ranges": [
                      "293626 <= id <= 293626",
                      "295093 <= id <= 295093",
                      "296172 <= id <= 296172"
                    ],
                    "index_dives_for_eq_ranges": true,
                    "chosen": true

...

        "refine_plan": [
          {
            "table": "`canada`",
            "pushed_index_condition": "((`canada`.`id` = 296172) or (`canada`.`id` = 295093) or (`canada`.`id` = 293626))",
            "table_condition_attached": null,
            "access_type": "range"
          }
        ]

ICPがORsに与えられていることに注意してください。このは、ORINに変換されず、InnoDBが=テストの束を実行することを意味します ICPを通じて。 (MyISAMを検討する価値はないと思います。)

(これはPerconaの5.6.22-71.0-logです。idはセカンダリインデックスです。)

いくつかの値を持つIN()の場合

eq_range_index_dive_limit = 10; 8つの値があります。

        "condition_processing": {
          "condition": "WHERE",
          "original_condition": "(`canada`.`id` in (296172,295093,293626,295573,297148,296127,295588,295810))",
          "steps": [
            {
              "transformation": "equality_propagation",
              "resulting_condition": "(`canada`.`id` in (296172,295093,293626,295573,297148,296127,295588,295810))"
            },

...

              "analyzing_range_alternatives": {
                "range_scan_alternatives": [
                  {
                    "index": "id",
                    "ranges": [
                      "293626 <= id <= 293626",
                      "295093 <= id <= 295093",
                      "295573 <= id <= 295573",
                      "295588 <= id <= 295588",
                      "295810 <= id <= 295810",
                      "296127 <= id <= 296127",
                      "296172 <= id <= 296172",
                      "297148 <= id <= 297148"
                    ],
                    "index_dives_for_eq_ranges": true,
                    "chosen": true

...

        "refine_plan": [
          {
            "table": "`canada`",
            "pushed_index_condition": "(`canada`.`id` in (296172,295093,293626,295573,297148,296127,295588,295810))",
            "table_condition_attached": null,
            "access_type": "range"
          }
        ]

INORに変換されていないようです。

サイドノート:定数値がソートされたであることに注意してください。これは、次の2つの利点があります。

  • ジャンプを少なくすることで、すべての値に到達するためのより良いキャッシュ、より少ないI/Oがあります。
  • 2つの同様のクエリが別々の接続から来ており、それらがトランザクション内にある場合、リストの重複によるデッドロックではなく遅延が発生する可能性が高くなります。

最後に、多くの値を持つIN()

      {
        "condition_processing": {
          "condition": "WHERE",
          "original_condition": "(`canada`.`id` in (293831,292259,292881,293440,292558,295792,292293,292593,294337,295430,295034,297060,293811,295587,294651,295559,293213,295742,292605,296018,294529,296711,293919,294732,294689,295540,293000,296916,294433,297112,293815,292522,296816,293320,293232,295369,291894,293700,291839,293049,292738,294895,294473,294023,294173,293019,291976,294923,294797,296958,294075,293450,296952,297185,295351,295736,296312,294330,292717,294638,294713,297176,295896,295137,296573,292236,294966,296642,296073,295903,293057,294628,292639,293803,294470,295353,297196,291752,296118,296964,296185,295338,295956,296064,295039,297201,297136,295206,295986,292172,294803,294480,294706,296975,296604,294493,293181,292526,293354,292374,292344,293744,294165,295082,296203,291918,295211,294289,294877,293120,295387))",
          "steps": [
            {
              "transformation": "equality_propagation",
              "resulting_condition": "(`canada`.`id` in (293831,292259,292881,293440,292558,295792,292293,292593,294337,295430,295034,297060,293811,295587,294651,295559,293213,295742,292605,296018,294529,296711,293919,294732,294689,295540,293000,296916,294433,297112,293815,292522,296816,293320,293232,295369,291894,293700,291839,293049,292738,294895,294473,294023,294173,293019,291976,294923,294797,296958,294075,293450,296952,297185,295351,295736,296312,294330,292717,294638,294713,297176,295896,295137,296573,292236,294966,296642,296073,295903,293057,294628,292639,293803,294470,295353,297196,291752,296118,296964,296185,295338,295956,296064,295039,297201,297136,295206,295986,292172,294803,294480,294706,296975,296604,294493,293181,292526,293354,292374,292344,293744,294165,295082,296203,291918,295211,294289,294877,293120,295387))"
            },

...

              "analyzing_range_alternatives": {
                "range_scan_alternatives": [
                  {
                    "index": "id",
                    "ranges": [
                      "291752 <= id <= 291752",
                      "291839 <= id <= 291839",
                      ...
                      "297196 <= id <= 297196",
                      "297201 <= id <= 297201"
                    ],
                    "index_dives_for_eq_ranges": false,
                    "rows": 111,
                    "chosen": true

...

        "refine_plan": [
          {
            "table": "`canada`",
            "pushed_index_condition": "(`canada`.`id` in (293831,292259,292881,293440,292558,295792,292293,292593,294337,295430,295034,297060,293811,295587,294651,295559,293213,295742,292605,296018,294529,296711,293919,294732,294689,295540,293000,296916,294433,297112,293815,292522,296816,293320,293232,295369,291894,293700,291839,293049,292738,294895,294473,294023,294173,293019,291976,294923,294797,296958,294075,293450,296952,297185,295351,295736,296312,294330,292717,294638,294713,297176,295896,295137,296573,292236,294966,296642,296073,295903,293057,294628,292639,293803,294470,295353,297196,291752,296118,296964,296185,295338,295956,296064,295039,297201,297136,295206,295986,292172,294803,294480,294706,296975,296604,294493,293181,292526,293354,292374,292344,293744,294165,295082,296203,291918,295211,294289,294877,293120,295387))",
            "table_condition_attached": null,
            "access_type": "range"
          }
        ]

サイドノート:トレースがかさばるのでこれが必要でした:

@@global.optimizer_trace_max_mem_size = 32222;
3
Rick James

以下は、MySQL 5.6 @SQLFiddleを使用した6つのクエリの詳細です。

要約すると、6つのクエリは独立してインデックス付けされた列をカバーし、データタイプごとに2つのクエリが使用されました。すべてのクエリでは、使用されているIN()またはORに関係なく、インデックスが使用されます。

        |   ORs      |   IN()
integer | uses index | uses index
date    | uses index | uses index
varchar | uses index | uses index

ORはインデックスを使用できないことを意味するステートメントをデバンクしたかっただけです。これは真実ではありません。次の例の6つのクエリが表示されるように、インデックスはORを使用するクエリで使用できます。

また、多くの人が、IN()がORのセットの構文ショートカットであることを無視しているようです。小規模では、IN()-v- ORを使用した場合のパフォーマンスの違いは非常に(無限に)わずかです。

大規模な場合、IN()は確かに便利ですが、論理的にはOR条件のセットに相当します。クエリごとに状況が変わるため、テーブルでクエリをテストするのが常に最適です。

6つの説明計画の要約、すべて「インデックス条件の使用」(右にスクロール)

  Query               select_type    table    type    possible_keys      key      key_len   ref   rows   filtered           Extra          
                      ------------- --------- ------- --------------- ----------- --------- ----- ------ ---------- ----------------------- 
  Integers using OR   SIMPLE        mytable   range   aNum_idx        aNum_idx    4               10     100.00     Using index condition  
  Integers using IN   SIMPLE        mytable   range   aNum_idx        aNum_idx    4               10     100.00     Using index condition  
  Dates using OR      SIMPLE        mytable   range   aDate_idx       aDate_idx   6               7      100.00     Using index condition  
  Dates using IN      SIMPLE        mytable   range   aDate_idx       aDate_idx   6               7      100.00     Using index condition  
  Varchar using OR    SIMPLE        mytable   range   aName_idx       aName_idx   768             10     100.00     Using index condition  
  Varchar using IN    SIMPLE        mytable   range   aName_idx       aName_idx   768             10     100.00     Using index condition  

SQL Fiddle

MySQL 5.6スキーマのセットアップ

CREATE TABLE `myTable` (
  `id` mediumint(8) unsigned NOT NULL auto_increment,
  `aName` varchar(255) default NULL,
  `aDate` datetime,
  `aNum`  mediumint(8),
  PRIMARY KEY (`id`)
) AUTO_INCREMENT=1;

ALTER TABLE `myTable` ADD INDEX `aName_idx` (`aName`);
ALTER TABLE `myTable` ADD INDEX `aDate_idx` (`aDate`);
ALTER TABLE `myTable` ADD INDEX `aNum_idx` (`aNum`);

INSERT INTO `myTable` (`aName`,`aDate`)
 VALUES 
 ("Daniel","2017-09-19 01:22:31")
,("Quentin","2017-06-03 01:06:45")
,("Chester","2017-06-14 17:49:36")
,("Lev","2017-08-30 06:27:59")
,("Garrett","2018-10-04 02:40:37")
,("Lane","2017-01-22 17:11:21")
,("Chaim","2017-09-20 11:13:46")
,("Kieran","2018-03-10 18:37:26")
,("Cedric","2017-05-20 16:25:10")
,("Conan","2018-07-10 06:29:39")
,("Rudyard","2017-07-14 00:04:00")
,("Chadwick","2018-08-18 08:54:08")
,("Darius","2018-10-02 06:55:56")
,("Joseph","2017-06-19 13:20:33")
,("Wayne","2017-04-02 23:20:25")
,("Hall","2017-10-13 00:17:24")
,("Craig","2016-12-04 08:15:22")
,("Keane","2018-03-12 04:21:46")
,("Russell","2017-07-14 17:21:58")
,("Seth","2018-07-25 05:51:30")
,("Cole","2018-06-09 15:32:53")
,("Donovan","2017-08-12 05:21:35")
,("Damon","2017-06-27 03:44:19")
,("Brian","2017-02-01 23:35:20")
,("Harper","2017-08-25 04:29:27")
,("Chandler","2017-09-30 23:54:06")
,("Edward","2018-07-30 12:18:07")
,("Curran","2018-05-23 09:31:53")
,("Uriel","2017-05-08 03:31:43")
,("Honorato","2018-04-07 14:57:53")
,("Griffin","2017-01-07 23:35:31")
,("Hasad","2017-05-15 05:32:41")
,("Burke","2017-07-04 01:11:19")
,("Hyatt","2017-03-14 17:12:28")
,("Brenden","2017-10-17 05:16:14")
,("Ryan","2018-10-10 08:07:55")
,("Giacomo","2018-10-06 14:21:21")
,("James","2018-02-06 02:45:59")
,("Colt","2017-10-10 08:11:26")
,("Kermit","2017-09-18 16:57:16")
,("Drake","2018-05-20 22:08:36")
,("Berk","2017-04-16 17:39:32")
,("Alan","2018-09-01 05:33:05")
,("Deacon","2017-04-20 07:03:05")
,("Omar","2018-03-02 15:04:32")
,("Thaddeus","2017-09-19 04:07:54")
,("Troy","2016-12-13 04:24:08")
,("Rogan","2017-11-02 00:03:25")
,("Grant","2017-08-21 01:45:16")
,("Walker","2016-11-26 15:54:52")
,("Clarke","2017-07-20 02:26:56")
,("Clayton","2018-08-16 05:09:29")
,("Denton","2018-08-11 05:26:05")
,("Nicholas","2018-07-19 09:29:55")
,("Hashim","2018-08-10 20:38:06")
,("Todd","2016-10-25 01:01:36")
,("Xenos","2017-05-11 22:50:35")
,("Bert","2017-06-17 18:08:21")
,("Oleg","2018-01-03 13:10:32")
,("Hall","2018-06-04 01:53:45")
,("Evan","2017-01-16 01:04:25")
,("Mohammad","2016-11-18 05:42:52")
,("Armand","2016-12-18 06:57:57")
,("Kaseem","2018-06-12 23:09:57")
,("Colin","2017-06-29 05:25:52")
,("Arthur","2016-12-29 04:38:13")
,("Xander","2016-11-14 19:35:32")
,("Dante","2016-12-01 09:01:04")
,("Zahir","2018-02-17 14:44:53")
,("Raymond","2017-03-09 05:33:06")
,("Giacomo","2017-04-17 06:12:52")
,("Fulton","2017-06-04 00:41:57")
,("Chase","2018-01-14 03:03:57")
,("William","2017-05-08 09:44:59")
,("Fuller","2017-03-31 20:35:20")
,("Jarrod","2017-02-15 02:45:29")
,("Nissim","2018-03-11 14:19:25")
,("Chester","2017-11-05 00:14:27")
,("Perry","2017-12-24 11:58:04")
,("Theodore","2017-06-26 12:34:12")
,("Mason","2017-10-02 03:53:49")
,("Brenden","2018-10-08 10:09:47")
,("Jerome","2017-11-05 20:34:25")
,("Keaton","2018-08-18 00:55:56")
,("Tiger","2017-05-21 16:59:07")
,("Benjamin","2018-04-10 14:46:36")
,("John","2018-09-05 18:53:03")
,("Jakeem","2018-10-11 00:17:38")
,("Kenyon","2017-12-18 22:19:29")
,("Ferris","2017-03-29 06:59:13")
,("Hoyt","2017-01-03 03:48:56")
,("Fitzgerald","2017-07-27 11:27:52")
,("Forrest","2017-10-05 23:14:21")
,("Jordan","2017-01-11 03:48:09")
,("Lev","2017-05-25 08:03:39")
,("Chase","2017-06-18 19:09:23")
,("Ryder","2016-12-13 12:50:50")
,("Malik","2017-11-19 15:15:55")
,("Zeph","2018-04-04 11:22:12")
,("Amala","2017-01-29 07:52:17")
;

update MyTable
set aNum = id
;

クエリ1

select 'aNum by OR' q, mytable.*
from mytable
where aNum = 12
OR aNum = 22
OR aNum = 27
OR aNum = 32
OR aNum = 42
OR aNum = 52
OR aNum = 62
OR aNum = 65
OR aNum = 72
OR aNum = 82

結果

|          q | id |    aName |                aDate | aNum |
|------------|----|----------|----------------------|------|
| aNum by OR | 12 | Chadwick | 2018-08-18T08:54:08Z |   12 |
| aNum by OR | 22 |  Donovan | 2017-08-12T05:21:35Z |   22 |
| aNum by OR | 27 |   Edward | 2018-07-30T12:18:07Z |   27 |
| aNum by OR | 32 |    Hasad | 2017-05-15T05:32:41Z |   32 |
| aNum by OR | 42 |     Berk | 2017-04-16T17:39:32Z |   42 |
| aNum by OR | 52 |  Clayton | 2018-08-16T05:09:29Z |   52 |
| aNum by OR | 62 | Mohammad | 2016-11-18T05:42:52Z |   62 |
| aNum by OR | 65 |    Colin | 2017-06-29T05:25:52Z |   65 |
| aNum by OR | 72 |   Fulton | 2017-06-04T00:41:57Z |   72 |
| aNum by OR | 82 |  Brenden | 2018-10-08T10:09:47Z |   82 |

クエリ2

select 'aNum by IN' q, mytable.*
from mytable
where aNum IN (
            12
          , 22
          , 27
          , 32
          , 42
          , 52
          , 62
          , 65
          , 72
          , 82
          )

結果

|          q | id |    aName |                aDate | aNum |
|------------|----|----------|----------------------|------|
| aNum by IN | 12 | Chadwick | 2018-08-18T08:54:08Z |   12 |
| aNum by IN | 22 |  Donovan | 2017-08-12T05:21:35Z |   22 |
| aNum by IN | 27 |   Edward | 2018-07-30T12:18:07Z |   27 |
| aNum by IN | 32 |    Hasad | 2017-05-15T05:32:41Z |   32 |
| aNum by IN | 42 |     Berk | 2017-04-16T17:39:32Z |   42 |
| aNum by IN | 52 |  Clayton | 2018-08-16T05:09:29Z |   52 |
| aNum by IN | 62 | Mohammad | 2016-11-18T05:42:52Z |   62 |
| aNum by IN | 65 |    Colin | 2017-06-29T05:25:52Z |   65 |
| aNum by IN | 72 |   Fulton | 2017-06-04T00:41:57Z |   72 |
| aNum by IN | 82 |  Brenden | 2018-10-08T10:09:47Z |   82 |

クエリ3

select 'adate by OR' q, mytable.*
from mytable
where aDate= str_to_date("2017-02-15 02:45:29",'%Y-%m-%d %h:%i:%s')
OR aDate = str_to_date("2018-03-10 18:37:26",'%Y-%m-%d %h:%i:%s')
OR aDate = str_to_date("2017-05-20 16:25:10",'%Y-%m-%d %h:%i:%s')
OR aDate = str_to_date("2018-07-10 06:29:39",'%Y-%m-%d %h:%i:%s')
OR aDate = str_to_date("2017-07-14 00:04:00",'%Y-%m-%d %h:%i:%s')
OR aDate = str_to_date("2018-08-18 08:54:08",'%Y-%m-%d %h:%i:%s')
OR aDate = str_to_date("2018-10-02 06:55:56",'%Y-%m-%d %h:%i:%s')
OR aDate = str_to_date("2017-04-20 07:03:05",'%Y-%m-%d %h:%i:%s')
OR aDate = str_to_date("2018-03-02 15:04:32",'%Y-%m-%d %h:%i:%s')
OR aDate = str_to_date("2017-09-19 04:07:54",'%Y-%m-%d %h:%i:%s')
OR aDate = str_to_date("2016-12-13 04:24:08",'%Y-%m-%d %h:%i:%s')

結果

|           q | id |    aName |                aDate | aNum |
|-------------|----|----------|----------------------|------|
| adate by OR | 47 |     Troy | 2016-12-13T04:24:08Z |   47 |
| adate by OR | 76 |   Jarrod | 2017-02-15T02:45:29Z |   76 |
| adate by OR | 44 |   Deacon | 2017-04-20T07:03:05Z |   44 |
| adate by OR | 46 | Thaddeus | 2017-09-19T04:07:54Z |   46 |
| adate by OR | 10 |    Conan | 2018-07-10T06:29:39Z |   10 |
| adate by OR | 12 | Chadwick | 2018-08-18T08:54:08Z |   12 |
| adate by OR | 13 |   Darius | 2018-10-02T06:55:56Z |   13 |

クエリ4

select 'adate by IN' q, mytable.*
from mytable
where aDate IN (
          str_to_date("2017-02-15 02:45:29",'%Y-%m-%d %h:%i:%s')
        , str_to_date("2018-03-10 18:37:26",'%Y-%m-%d %h:%i:%s')
        , str_to_date("2017-05-20 16:25:10",'%Y-%m-%d %h:%i:%s')
        , str_to_date("2018-07-10 06:29:39",'%Y-%m-%d %h:%i:%s')
        , str_to_date("2017-07-14 00:04:00",'%Y-%m-%d %h:%i:%s')
        , str_to_date("2018-08-18 08:54:08",'%Y-%m-%d %h:%i:%s')
        , str_to_date("2018-10-02 06:55:56",'%Y-%m-%d %h:%i:%s')
        , str_to_date("2017-04-20 07:03:05",'%Y-%m-%d %h:%i:%s')
        , str_to_date("2018-03-02 15:04:32",'%Y-%m-%d %h:%i:%s')
        , str_to_date("2017-09-19 04:07:54",'%Y-%m-%d %h:%i:%s')
        , str_to_date("2016-12-13 04:24:08",'%Y-%m-%d %h:%i:%s')
        )

結果

|           q | id |    aName |                aDate | aNum |
|-------------|----|----------|----------------------|------|
| adate by IN | 47 |     Troy | 2016-12-13T04:24:08Z |   47 |
| adate by IN | 76 |   Jarrod | 2017-02-15T02:45:29Z |   76 |
| adate by IN | 44 |   Deacon | 2017-04-20T07:03:05Z |   44 |
| adate by IN | 46 | Thaddeus | 2017-09-19T04:07:54Z |   46 |
| adate by IN | 10 |    Conan | 2018-07-10T06:29:39Z |   10 |
| adate by IN | 12 | Chadwick | 2018-08-18T08:54:08Z |   12 |
| adate by IN | 13 |   Darius | 2018-10-02T06:55:56Z |   13 |

クエリ5

select 'name by  OR' q, mytable.*
from mytable
where aname = 'Alan'
OR aname = 'Brian'
OR aname = 'Chandler'
OR aname = 'Darius'
OR aname = 'Evan'
OR aname = 'Ferris'
OR aname = 'Giacomo'
OR aname = 'Hall'
OR aname = 'James'
OR aname = 'Jarrod'

結果

|           q | id |    aName |                aDate | aNum |
|-------------|----|----------|----------------------|------|
| name by  OR | 43 |     Alan | 2018-09-01T05:33:05Z |   43 |
| name by  OR | 24 |    Brian | 2017-02-01T23:35:20Z |   24 |
| name by  OR | 26 | Chandler | 2017-09-30T23:54:06Z |   26 |
| name by  OR | 13 |   Darius | 2018-10-02T06:55:56Z |   13 |
| name by  OR | 61 |     Evan | 2017-01-16T01:04:25Z |   61 |
| name by  OR | 90 |   Ferris | 2017-03-29T06:59:13Z |   90 |
| name by  OR | 37 |  Giacomo | 2018-10-06T14:21:21Z |   37 |
| name by  OR | 71 |  Giacomo | 2017-04-17T06:12:52Z |   71 |
| name by  OR | 16 |     Hall | 2017-10-13T00:17:24Z |   16 |
| name by  OR | 60 |     Hall | 2018-06-04T01:53:45Z |   60 |
| name by  OR | 38 |    James | 2018-02-06T02:45:59Z |   38 |
| name by  OR | 76 |   Jarrod | 2017-02-15T02:45:29Z |   76 |

クエリ6

select 'name by IN' q, mytable.*
from mytable
where aname IN (
      'Alan'
     ,'Brian'
     ,'Chandler'
     , 'Darius'
     , 'Evan'
     , 'Ferris'
     , 'Giacomo'
     , 'Hall'
     , 'James'
     , 'Jarrod'
     )

結果

|          q | id |    aName |                aDate | aNum |
|------------|----|----------|----------------------|------|
| name by IN | 43 |     Alan | 2018-09-01T05:33:05Z |   43 |
| name by IN | 24 |    Brian | 2017-02-01T23:35:20Z |   24 |
| name by IN | 26 | Chandler | 2017-09-30T23:54:06Z |   26 |
| name by IN | 13 |   Darius | 2018-10-02T06:55:56Z |   13 |
| name by IN | 61 |     Evan | 2017-01-16T01:04:25Z |   61 |
| name by IN | 90 |   Ferris | 2017-03-29T06:59:13Z |   90 |
| name by IN | 37 |  Giacomo | 2018-10-06T14:21:21Z |   37 |
| name by IN | 71 |  Giacomo | 2017-04-17T06:12:52Z |   71 |
| name by IN | 16 |     Hall | 2017-10-13T00:17:24Z |   16 |
| name by IN | 60 |     Hall | 2018-06-04T01:53:45Z |   60 |
| name by IN | 38 |    James | 2018-02-06T02:45:59Z |   38 |
| name by IN | 76 |   Jarrod | 2017-02-15T02:45:29Z |   76 |
2
Used_By_Already

私はそれらが同じであるに違いないでしょう、あなたは以下をすることによってテストを実行できます:

「(1、2、3、4)」を500回ループして、どれくらい時間がかかるかを確認します。 「= 1または= 2または= 3 ...」バージョンを500回ループして、実行時間を確認します。

someFieldがインデックスで、テーブルが大きい場合、結合方法を試すこともできます...

SELECT ... 
    FROM ... 
        INNER JOIN (SELECT 1 as newField UNION ALL SELECT 2 UNION ALL SELECT 3 UNION ALL SELECT 4) dt ON someFIELD =newField

SQL Serverで上記の結合方法を試しましたが、in(1,2,3,4)とほぼ同じであり、どちらもクラスター化インデックスシークになります。 MySQLがそれらをどのように処理するかわかりません。

2
KM.

コンパイラがこれらのタイプのクエリを最適化する方法について私が理解していることから、IN句を使用する方が複数のOR句よりも効率的です。 BETWEEN句を使用できる値がある場合は、さらに効率的です。

0
Brandon Wood

2018:INが高速になりました。しかし、> = && <=INよりも高速です。

これが私の ベンチマーク です。

0
evilReiko

Fieldにインデックスがある限り、BETWEENはそれを使用して一方の端をすばやく見つけ、もう一方の端に移動します。これが最も効率的です。

私が見たすべてのEXPLAINは、 "IN(...)"と "... OR ..."が互換性があり、等しく(非)効率的であることを示しています。これは、オプティマイザが間隔を構成しているかどうかを知る方法がないためです。また、個々の値に対するUNION ALL SELECTと同等です。

0
dkretz