私のデータセットは次のようになります:
Date Value
1/1/1988 0.62
1/2/1988 0.64
1/3/1988 0.65
1/4/1988 0.66
1/5/1988 0.67
1/6/1988 0.66
1/7/1988 0.64
1/8/1988 0.66
1/9/1988 0.65
1/10/1988 0.65
1/11/1988 0.64
1/12/1988 0.66
1/13/1988 0.67
1/14/1988 0.66
1/15/1988 0.65
1/16/1988 0.64
1/17/1988 0.62
1/18/1988 0.64
1/19/1988 0.62
1/20/1988 0.62
1/21/1988 0.64
1/22/1988 0.62
1/23/1988 0.60
このコードを使用してこのデータを読み取りました
df.set_index(df['Date'], drop=False, append=False, inplace=False, verify_integrity=False).drop('Date', 1)
しかし、問題はインデックスが日付形式ではないことです。質問は、この列を日付インデックスとして設定する方法ですか?
質問には適切な説明がありませんでしたが、次のことができます。
In [75]:
# convert to datetime
df['Date'] = pd.to_datetime(df['Date'])
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 23 entries, 0 to 22
Data columns (total 2 columns):
Date 23 non-null datetime64[ns]
Value 23 non-null float64
dtypes: datetime64[ns](1), float64(1)
memory usage: 448.0 bytes
In [76]:
# set the index
df.set_index('Date', inplace=True)
df.info()
<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 23 entries, 1988-01-01 to 1988-01-23
Data columns (total 1 columns):
Value 23 non-null float64
dtypes: float64(1)
memory usage: 368.0 bytes
ここに to_datetime
は、日付文字列をdatetime
dtypeに変換します set_index
param inplace=True
は、あなたが必要とすることすべてです、