pd.meltが複数のカラムの融解をサポートしているかどうか疑問に思います。以下の例でvalue_varsをリストのリストとして取得しようとしていますが、エラーが発生します。
ValueError: Location based indexing can only have [labels (MUST BE IN THE INDEX), slices of labels (BOTH endpoints included! Can be slices of integers if the index is integers), listlike of labels, boolean] types
pandas 0.23.1を使用します。
df = pd.DataFrame({'City': ['Houston', 'Austin', 'Hoover'],
'State': ['Texas', 'Texas', 'Alabama'],
'Name':['Aria', 'Penelope', 'Niko'],
'Mango':[4, 10, 90],
'Orange': [10, 8, 14],
'Watermelon':[40, 99, 43],
'Gin':[16, 200, 34],
'Vodka':[20, 33, 18]},
columns=['City', 'State', 'Name', 'Mango', 'Orange', 'Watermelon', 'Gin', 'Vodka'])
必要な出力:
City State Fruit Pounds Drink Ounces
0 Houston Texas Mango 4 Gin 16.0
1 Austin Texas Mango 10 Gin 200.0
2 Hoover Alabama Mango 90 Gin 34.0
3 Houston Texas Orange 10 Vodka 20.0
4 Austin Texas Orange 8 Vodka 33.0
5 Hoover Alabama Orange 14 Vodka 18.0
6 Houston Texas Watermelon 40 nan NaN
7 Austin Texas Watermelon 99 nan NaN
8 Hoover Alabama Watermelon 43 nan NaN
私はそれを試しましたが、前述のエラーが発生します:
df.melt(id_vars=['City', 'State'],
value_vars=[['Mango', 'Orange', 'Watermelon'], ['Gin', 'Vodka']],var_name=['Fruit', 'Drink'],
value_name=['Pounds', 'Ounces'])
カテゴリごとにdouble melt
を使用してから、 concat
ですが、値が重複しているため、cumcount
内の一意のtriples
に MultiIndex
が追加されます:
df1 = df.melt(id_vars=['City', 'State'],
value_vars=['Mango', 'Orange', 'Watermelon'],
var_name='Fruit', value_name='Pounds')
df2 = df.melt(id_vars=['City', 'State'],
value_vars=['Gin', 'Vodka'],
var_name='Drink', value_name='Ounces')
df1 = df1.set_index(['City', 'State', df1.groupby(['City', 'State']).cumcount()])
df2 = df2.set_index(['City', 'State', df2.groupby(['City', 'State']).cumcount()])
df3 = (pd.concat([df1, df2],axis=1)
.sort_index(level=2)
.reset_index(level=2, drop=True)
.reset_index())
print (df3)
City State Fruit Pounds Drink Ounces
0 Austin Texas Mango 10 Gin 200.0
1 Hoover Alabama Mango 90 Gin 34.0
2 Houston Texas Mango 4 Gin 16.0
3 Austin Texas Orange 8 Vodka 33.0
4 Hoover Alabama Orange 14 Vodka 18.0
5 Houston Texas Orange 10 Vodka 20.0
6 Austin Texas Watermelon 99 NaN NaN
7 Hoover Alabama Watermelon 43 NaN NaN
8 Houston Texas Watermelon 40 NaN NaN