これは、6月の以前の質問に関連しています。
過去1年間に多数の回答で@Sasha
によって議論された行に沿って、2番目のカスタム分布を使用して定義されたカスタム混合分布があります。
分布を定義するコードは次のとおりです。
nDist /: CharacteristicFunction[nDist[a_, b_, m_, s_],
t_] := (a b E^(I m t - (s^2 t^2)/2))/((I a + t) (-I b + t));
nDist /: PDF[nDist[a_, b_, m_, s_], x_] := (1/(2*(a + b)))*a*
b*(E^(a*(m + (a*s^2)/2 - x))* Erfc[(m + a*s^2 - x)/(Sqrt[2]*s)] +
E^(b*(-m + (b*s^2)/2 + x))*
Erfc[(-m + b*s^2 + x)/(Sqrt[2]*s)]);
nDist /: CDF[nDist[a_, b_, m_, s_],
x_] := ((1/(2*(a + b)))*((a + b)*E^(a*x)*
Erfc[(m - x)/(Sqrt[2]*s)] -
b*E^(a*m + (a^2*s^2)/2)*Erfc[(m + a*s^2 - x)/(Sqrt[2]*s)] +
a*E^((-b)*m + (b^2*s^2)/2 + a*x + b*x)*
Erfc[(-m + b*s^2 + x)/(Sqrt[2]*s)]))/ E^(a*x);
nDist /: Quantile[nDist[a_, b_, m_, s_], p_] :=
Module[{x},
x /. FindRoot[CDF[nDist[a, b, m, s], x] == #, {x, m}] & /@ p] /;
VectorQ[p, 0 < # < 1 &]
nDist /: Quantile[nDist[a_, b_, m_, s_], p_] :=
Module[{x}, x /. FindRoot[CDF[nDist[a, b, m, s], x] == p, {x, m}]] /;
0 < p < 1
nDist /: Quantile[nDist[a_, b_, m_, s_], p_] := -Infinity /; p == 0
nDist /: Quantile[nDist[a_, b_, m_, s_], p_] := Infinity /; p == 1
nDist /: Mean[nDist[a_, b_, m_, s_]] := 1/a - 1/b + m;
nDist /: Variance[nDist[a_, b_, m_, s_]] := 1/a^2 + 1/b^2 + s^2;
nDist /: StandardDeviation[ nDist[a_, b_, m_, s_]] :=
Sqrt[ 1/a^2 + 1/b^2 + s^2];
nDist /: DistributionDomain[nDist[a_, b_, m_, s_]] :=
Interval[{0, Infinity}]
nDist /: DistributionParameterQ[nDist[a_, b_, m_, s_]] := !
TrueQ[Not[Element[{a, b, s, m}, Reals] && a > 0 && b > 0 && s > 0]]
nDist /: DistributionParameterAssumptions[nDist[a_, b_, m_, s_]] :=
Element[{a, b, s, m}, Reals] && a > 0 && b > 0 && s > 0
nDist /: Random`DistributionVector[nDist[a_, b_, m_, s_], n_, prec_] :=
RandomVariate[ExponentialDistribution[a], n,
WorkingPrecision -> prec] -
RandomVariate[ExponentialDistribution[b], n,
WorkingPrecision -> prec] +
RandomVariate[NormalDistribution[m, s], n,
WorkingPrecision -> prec];
(* Fitting: This uses Mean, central moments 2 and 3 and 4th cumulant \
but it often does not provide a solution *)
nDistParam[data_] := Module[{mn, vv, m3, k4, al, be, m, si},
mn = Mean[data];
vv = CentralMoment[data, 2];
m3 = CentralMoment[data, 3];
k4 = Cumulant[data, 4];
al =
ConditionalExpression[
Root[864 - 864 m3 #1^3 - 216 k4 #1^4 + 648 m3^2 #1^6 +
36 k4^2 #1^8 - 216 m3^3 #1^9 + (-2 k4^3 + 27 m3^4) #1^12 &,
2], k4 > Root[-27 m3^4 + 4 #1^3 &, 1]];
be = ConditionalExpression[
Root[2 Root[
864 - 864 m3 #1^3 - 216 k4 #1^4 + 648 m3^2 #1^6 +
36 k4^2 #1^8 -
216 m3^3 #1^9 + (-2 k4^3 + 27 m3^4) #1^12 &,
2]^3 + (-2 +
m3 Root[
864 - 864 m3 #1^3 - 216 k4 #1^4 + 648 m3^2 #1^6 +
36 k4^2 #1^8 -
216 m3^3 #1^9 + (-2 k4^3 + 27 m3^4) #1^12 &,
2]^3) #1^3 &, 1], k4 > Root[-27 m3^4 + 4 #1^3 &, 1]];
m = mn - 1/al + 1/be;
si =
Sqrt[Abs[-al^-2 - be^-2 + vv ]];(*Ensure positive*)
{al,
be, m, si}];
nDistLL =
Compile[{a, b, m, s, {x, _Real, 1}},
Total[Log[
1/(2 (a +
b)) a b (E^(a (m + (a s^2)/2 - x)) Erfc[(m + a s^2 -
x)/(Sqrt[2] s)] +
E^(b (-m + (b s^2)/2 + x)) Erfc[(-m + b s^2 +
x)/(Sqrt[2] s)])]](*, CompilationTarget->"C",
RuntimeAttributes->{Listable}, Parallelization->True*)];
nlloglike[data_, a_?NumericQ, b_?NumericQ, m_?NumericQ, s_?NumericQ] :=
nDistLL[a, b, m, s, data];
nFit[data_] := Module[{a, b, m, s, a0, b0, m0, s0, res},
(* So far have not found a good way to quickly estimate a and \
b. Starting assumption is that they both = 2,then m0 ~=
Mean and s0 ~=
StandardDeviation it seems to work better if a and b are not the \
same at start. *)
{a0, b0, m0, s0} = nDistParam[data];(*may give Undefined values*)
If[! (VectorQ[{a0, b0, m0, s0}, NumericQ] &&
VectorQ[{a0, b0, s0}, # > 0 &]),
m0 = Mean[data];
s0 = StandardDeviation[data];
a0 = 1;
b0 = 2;];
res = {a, b, m, s} /.
FindMaximum[
nlloglike[data, Abs[a], Abs[b], m,
Abs[s]], {{a, a0}, {b, b0}, {m, m0}, {s, s0}},
Method -> "PrincipalAxis"][[2]];
{Abs[res[[1]]], Abs[res[[2]]], res[[3]], Abs[res[[4]]]}];
nFit[data_, {a0_, b0_, m0_, s0_}] := Module[{a, b, m, s, res},
res = {a, b, m, s} /.
FindMaximum[
nlloglike[data, Abs[a], Abs[b], m,
Abs[s]], {{a, a0}, {b, b0}, {m, m0}, {s, s0}},
Method -> "PrincipalAxis"][[2]];
{Abs[res[[1]]], Abs[res[[2]]], res[[3]], Abs[res[[4]]]}];
dDist /: PDF[dDist[a_, b_, m_, s_], x_] :=
PDF[nDist[a, b, m, s], Log[x]]/x;
dDist /: CDF[dDist[a_, b_, m_, s_], x_] :=
CDF[nDist[a, b, m, s], Log[x]];
dDist /: EstimatedDistribution[data_, dDist[a_, b_, m_, s_]] :=
dDist[Sequence @@ nFit[Log[data]]];
dDist /: EstimatedDistribution[data_,
dDist[a_, b_, m_,
s_], {{a_, a0_}, {b_, b0_}, {m_, m0_}, {s_, s0_}}] :=
dDist[Sequence @@ nFit[Log[data], {a0, b0, m0, s0}]];
dDist /: Quantile[dDist[a_, b_, m_, s_], p_] :=
Module[{x}, x /. FindRoot[CDF[dDist[a, b, m, s], x] == p, {x, s}]] /;
0 < p < 1
dDist /: Quantile[dDist[a_, b_, m_, s_], p_] :=
Module[{x},
x /. FindRoot[ CDF[dDist[a, b, m, s], x] == #, {x, s}] & /@ p] /;
VectorQ[p, 0 < # < 1 &]
dDist /: Quantile[dDist[a_, b_, m_, s_], p_] := -Infinity /; p == 0
dDist /: Quantile[dDist[a_, b_, m_, s_], p_] := Infinity /; p == 1
dDist /: DistributionDomain[dDist[a_, b_, m_, s_]] :=
Interval[{0, Infinity}]
dDist /: DistributionParameterQ[dDist[a_, b_, m_, s_]] := !
TrueQ[Not[Element[{a, b, s, m}, Reals] && a > 0 && b > 0 && s > 0]]
dDist /: DistributionParameterAssumptions[dDist[a_, b_, m_, s_]] :=
Element[{a, b, s, m}, Reals] && a > 0 && b > 0 && s > 0
dDist /: Random`DistributionVector[dDist[a_, b_, m_, s_], n_, prec_] :=
Exp[RandomVariate[ExponentialDistribution[a], n,
WorkingPrecision -> prec] -
RandomVariate[ExponentialDistribution[b], n,
WorkingPrecision -> prec] +
RandomVariate[NormalDistribution[m, s], n,
WorkingPrecision -> prec]];
これにより、分布パラメーターを近似し、PDF'sおよびCDF'sを生成できます。プロットの例:
Plot[PDF[dDist[3.77, 1.34, -2.65, 0.40], x], {x, 0, .3},
PlotRange -> All]
Plot[CDF[dDist[3.77, 1.34, -2.65, 0.40], x], {x, 0, .3},
PlotRange -> All]
これで、平均残余寿命を計算するfunction
を定義しました(説明については この質問 を参照してください)。
MeanResidualLife[start_, dist_] :=
NExpectation[X \[Conditioned] X > start, X \[Distributed] dist] -
start
MeanResidualLife[start_, limit_, dist_] :=
NExpectation[X \[Conditioned] start <= X <= limit,
X \[Distributed] dist] - start
2番目のように制限を設定しないこれらの最初のものは計算に時間がかかりますが、両方とも機能します。
次に、同じ分布(またはそのバリエーション)のMeanResidualLife
関数の最小値を見つけるか、最小化する必要があります。
私はこれについて多くのバリエーションを試しました:
FindMinimum[MeanResidualLife[x, dDist[3.77, 1.34, -2.65, 0.40]], x]
FindMinimum[MeanResidualLife[x, 1, dDist[3.77, 1.34, -2.65, 0.40]], x]
NMinimize[{MeanResidualLife[x, dDist[3.77, 1.34, -2.65, 0.40]],
0 <= x <= 1}, x]
NMinimize[{MeanResidualLife[x, 1, dDist[3.77, 1.34, -2.65, 0.40]], 0 <= x <= 1}, x]
これらは永久に実行されるか、次のように実行されます。
Power :: infy:無限の表現1/0。 >>
MeanResidualLife
関数は、単純ではあるが類似した形の分布に適用され、最小値が1つあることを示しています。
Plot[PDF[LogNormalDistribution[1.75, 0.65], x], {x, 0, 30},
PlotRange -> All]
Plot[MeanResidualLife[x, LogNormalDistribution[1.75, 0.65]], {x, 0,
30},
PlotRange -> {{0, 30}, {4.5, 8}}]
両方とも:
FindMinimum[MeanResidualLife[x, LogNormalDistribution[1.75, 0.65]], x]
FindMinimum[MeanResidualLife[x, 30, LogNormalDistribution[1.75, 0.65]], x]
LogNormalDistribution
と一緒に使用したときに(最初に大量のメッセージがある場合)答えを教えてください。
上記のカスタム配布でこれを機能させる方法についての考えはありますか?
制約またはオプションを追加する必要がありますか?
カスタム配布の定義で何か他のものを定義する必要がありますか?
おそらくFindMinimum
またはNMinimize
はもっと長く実行する必要があります(私はそれらを1時間近く実行しましたが、利用できません)。もしそうなら、関数の最小値を見つけるのをスピードアップする何らかの方法が必要ですか?方法についての提案はありますか?
Mathematica
にはこれを行う別の方法がありますか?
EST 2月9日午後5時50分追加:
誰でもダウンロードできますOleksandr Pavlyk'sWolfram Technology Conference 2011ワークショップ「Create Your Own Distribution」からMathematicaでディストリビューションを作成するプレゼンテーション こちら 。ダウンロードにはノートブック'ExampleOfParametricDistribution.nb'
が含まれています。これは、Mathematicaに付属しているディストリビューションのように使用できるディストリビューションを作成するために必要なすべての要素をレイアウトしているようです。
それは答えの一部を提供するかもしれません。
私が見る限り、問題は(すでに書いたように)単一の評価であっても、MeanResidualLife
の計算に時間がかかるということです。現在、FindMinimum
または同様の関数は、関数の最小値を見つけようとします。最小値を見つけるには、関数の1次導関数をゼロに設定し、解を求める必要があります。関数は非常に複雑であるため(おそらく微分できない)、2番目の可能性は数値の最小化を行うことであり、これには関数の多くの評価が必要です。エルゴ、それは非常に遅いです。
Mathematicaのマジックなしで試してみることをお勧めします。
最初に、定義したMeanResidualLife
が何であるかを見てみましょう。 NExpectation
またはExpectation
は、 期待値 を計算します。期待値については、分布のPDF
のみが必要です。上記の定義から単純な関数に抽出してみましょう。
pdf[a_, b_, m_, s_, x_] := (1/(2*(a + b)))*a*b*
(E^(a*(m + (a*s^2)/2 - x))*Erfc[(m + a*s^2 - x)/(Sqrt[2]*s)] +
E^(b*(-m + (b*s^2)/2 + x))*Erfc[(-m + b*s^2 + x)/(Sqrt[2]*s)])
pdf2[a_, b_, m_, s_, x_] := pdf[a, b, m, s, Log[x]]/x;
Pdf2をプロットすると、プロットとまったく同じになります
Plot[pdf2[3.77, 1.34, -2.65, 0.40, x], {x, 0, .3}]
期待値になりました。正しく理解できたら、通常の期待値を得るためにx * pdf[x]
を-inf
から+inf
に統合する必要があります。
x * pdf[x]
は次のようになります
Plot[pdf2[3.77, 1.34, -2.65, 0.40, x]*x, {x, 0, .3}, PlotRange -> All]
期待値は
NIntegrate[pdf2[3.77, 1.34, -2.65, 0.40, x]*x, {x, 0, \[Infinity]}]
Out= 0.0596504
ただし、start
と+inf
の間の期待値が必要なため、この範囲で統合する必要があります。また、PDF間隔が小さい場合、この範囲のPDFの積分で除算することにより、結果を正規化する必要があります。したがって、左限界の期待値の推測は
expVal[start_] :=
NIntegrate[pdf2[3.77, 1.34, -2.65, 0.40, x]*x, {x, start, \[Infinity]}]/
NIntegrate[pdf2[3.77, 1.34, -2.65, 0.40, x], {x, start, \[Infinity]}]
MeanResidualLife
については、start
を差し引いて、
MRL[start_] := expVal[start] - start
どのプロットとして
Plot[MRL[start], {start, 0, 0.3}, PlotRange -> {0, All}]
もっともらしいが、私は専門家ではありません。最後に、それを最小化したい、つまり、この関数が局所的最小値であるstart
を見つけたい。最小値は約0.05のようですが、その推測からより正確な値を見つけましょう
FindMinimum[MRL[start], {start, 0.05}]
そして、いくつかのエラーの後(あなたの関数は0以下で定義されていないので、その禁止された領域で最小化器が少し突くと思います)
{0.0418137、{start-> 0.0584312}}
したがって、最適なのは、start = 0.0584312
であり、平均残存寿命は0.0418137
です。
これが正しいかどうかはわかりませんが、もっともらしいようです。