ドイツのクレジットデータ(www4.stat.ncsu.edu/~boos/var.select/german.credit.html)に対してロジスティック回帰を実行しようとしています。コードをテストするために、数値変数のみを使用し、次のコードを使用して結果を回帰してみました。
import pandas as pd
import statsmodels.api as sm
import pylab as pl
import numpy as np
df = pd.read_csv("germandata.txt",delimiter=' ')
df.columns = ["chk_acc","duration","history","purpose","amount","savings_acc","employ_since","install_rate","pers_status","debtors","residence_since","property","age","other_plans","housing","existing_credit","job","no_people_liab","telephone","foreign_worker","admit"]
#pls note that I am only retaining numeric variables
cols_to_keep = ['admit','duration', 'amount', 'install_rate','residence_since','age','existing_credit','no_people_liab']
# rank of cols_to_keep is 8
print np.linalg.matrix_rank(df[cols_to_keep].values)
data = df[cols_to_keep]
data['intercept'] = 1.0
train_cols = data.columns[1:]
#to check the rank of train_cols, which in this case is 8
print np.linalg.matrix_rank(data[train_cols].values)
#fit logit model
logit = sm.Logit(data['admit'], data[train_cols])
result = logit.fit()
データを確認すると、8.0列はすべて独立しているように見えます。それにもかかわらず、Singular MatrixErrorが発生します。手伝ってもらえますか?
ありがとう
endog
y変数は0、1である必要があります。このデータセットでは、1と2の値があります。1を引くと、結果が生成されます。
>>> logit = sm.Logit(data['admit'] - 1, data[train_cols])
>>> result = logit.fit()
>>> print result.summary()
Logit Regression Results
==============================================================================
Dep. Variable: admit No. Observations: 999
Model: Logit Df Residuals: 991
Method: MLE Df Model: 7
Date: Fri, 19 Sep 2014 Pseudo R-squ.: 0.05146
Time: 10:06:06 Log-Likelihood: -579.09
converged: True LL-Null: -610.51
LLR p-value: 4.103e-11
===================================================================================
coef std err z P>|z| [95.0% Conf. Int.]
-----------------------------------------------------------------------------------
duration 0.0261 0.008 3.392 0.001 0.011 0.041
amount 7.062e-05 3.4e-05 2.075 0.038 3.92e-06 0.000
install_rate 0.2039 0.073 2.812 0.005 0.062 0.346
residence_since 0.0411 0.067 0.614 0.539 -0.090 0.172
age -0.0213 0.007 -2.997 0.003 -0.035 -0.007
existing_credit -0.1560 0.130 -1.196 0.232 -0.412 0.100
no_people_liab 0.1264 0.201 0.628 0.530 -0.268 0.521
intercept -1.5746 0.430 -3.661 0.000 -2.418 -0.732
===================================================================================
ただし、他の場合では、たとえば開始値が悪い場合など、ヘッセ行列を最適値から遠く離れて評価すると、ヘッセ行列が正定値ではない可能性があります。このような場合、ヘッセ行列を使用しないオプティマイザーへの切り替えが成功することがよくあります。たとえば、scipyの「bfgs」は多くの場合に機能する優れたオプティマイザーです
result = logit.fit(method='bfgs')