一連の4つの可能なマルコフ状態(A、B、C、D)があるとします。
X = [A, B, B, C, B, A, D, D, A, B, A, D, ....]
Pythonを使用してマルコフ変換行列を生成するにはどうすればよいですか?マトリックスは4 x 4でなければならず、各状態から他の3つの状態に移動する確率を示します。私は多くの例をオンラインで見てきましたが、それらのすべてでは、データに基づいて計算されたのではなく、マトリックスが与えられています。 hmmlearnも調べましたが、遷移マトリックスからそれを吐き出す方法については何も読みませんでした。この目的に使用できるライブラリはありますか?
Pythonでやろうとしていることの正確なRコードを次に示します。 https://stats.stackexchange.com/questions/26722/calculate-transition-matrix-markov-in-r
これにより、いくつかのアイデアが得られます。
transitions = ['A', 'B', 'B', 'C', 'B', 'A', 'D', 'D', 'A', 'B', 'A', 'D']
def rank(c):
return ord(c) - ord('A')
T = [rank(c) for c in transitions]
#create matrix of zeros
M = [[0]*4 for _ in range(4)]
for (i,j) in Zip(T,T[1:]):
M[i][j] += 1
#now convert to probabilities:
for row in M:
n = sum(row)
if n > 0:
row[:] = [f/sum(row) for f in row]
#print M:
for row in M:
print(row)
出力:
[0.0, 0.5, 0.0, 0.5]
[0.5, 0.25, 0.25, 0.0]
[0.0, 1.0, 0.0, 0.0]
[0.5, 0.0, 0.0, 0.5]
編集時上記のアイデアを実装する関数は次のとおりです。
#the following code takes a list such as
#[1,1,2,6,8,5,5,7,8,8,1,1,4,5,5,0,0,0,1,1,4,4,5,1,3,3,4,5,4,1,1]
#with states labeled as successive integers starting with 0
#and returns a transition matrix, M,
#where M[i][j] is the probability of transitioning from i to j
def transition_matrix(transitions):
n = 1+ max(transitions) #number of states
M = [[0]*n for _ in range(n)]
for (i,j) in Zip(transitions,transitions[1:]):
M[i][j] += 1
#now convert to probabilities:
for row in M:
s = sum(row)
if s > 0:
row[:] = [f/s for f in row]
return M
#test:
t = [1,1,2,6,8,5,5,7,8,8,1,1,4,5,5,0,0,0,1,1,4,4,5,1,3,3,4,5,4,1,1]
m = transition_matrix(t)
for row in m: print(' '.join('{0:.2f}'.format(x) for x in row))
出力:
0.67 0.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.50 0.12 0.12 0.25 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00
0.00 0.00 0.00 0.50 0.50 0.00 0.00 0.00 0.00
0.00 0.20 0.00 0.00 0.20 0.60 0.00 0.00 0.00
0.17 0.17 0.00 0.00 0.17 0.33 0.00 0.17 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00
0.00 0.33 0.00 0.00 0.00 0.33 0.00 0.00 0.33