私はテンソルフローバージョンを使用しています:
0.12.1
Cudaツールセットのバージョンは8です。
lrwxrwxrwx 1 root root 19 May 28 17:27 cuda -> /usr/local/cuda-8.0
ドキュメントどおり ここ cuDNNをダウンロードしてインストールしました。しかし、pythonスクリプトから次の行を実行しているときに、ヘッダーに記載されているエラーメッセージが表示されます。
model.fit_generator(train_generator,
steps_per_Epoch= len(train_samples),
validation_data=validation_generator,
validation_steps=len(validation_samples),
epochs=9)
詳細なエラーメッセージは次のとおりです。
Using TensorFlow backend.
I tensorflow/stream_executor/dso_loader.cc:128] successfully opened CUDA library libcublas.so locally
I tensorflow/stream_executor/dso_loader.cc:128] successfully opened CUDA library libcudnn.so locally
I tensorflow/stream_executor/dso_loader.cc:128] successfully opened CUDA library libcufft.so locally
I tensorflow/stream_executor/dso_loader.cc:128] successfully opened CUDA library libcuda.so.1 locally
I tensorflow/stream_executor/dso_loader.cc:128] successfully opened CUDA library libcurand.so locally
Epoch 1/9 Exception in thread Thread-1: Traceback (most recent call last): File " lib/python3.5/threading.py", line 914, in _bootstrap_inner
self.run() File " lib/python3.5/threading.py", line 862, in run
self._target(*self._args, **self._kwargs) File " lib/python3.5/site-packages/keras/engine/training.py", line 612, in data_generator_task
generator_output = next(self._generator) StopIteration
I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:937] successful NUMA node read from SysFS had negative value (-1),
but there must be at least one NUMA node, so returning NUMA node zero
I tensorflow/core/common_runtime/gpu/gpu_device.cc:885]
Found device 0 with properties: name: GRID K520 major: 3 minor: 0 memoryClockRate (GHz) 0.797 pciBusID 0000:00:03.0 Total memory: 3.94GiB Free memory:
3.91GiB
I tensorflow/core/common_runtime/gpu/gpu_device.cc:906] DMA: 0
I tensorflow/core/common_runtime/gpu/gpu_device.cc:916] 0: Y
I tensorflow/core/common_runtime/gpu/gpu_device.cc:975]
Creating TensorFlow device (/gpu:0) -> (device: 0, name: GRID K520, pci bus id: 0000:00:03.0)
Traceback (most recent call last): File "model_new.py", line 82, in <module>
model.fit_generator(train_generator, steps_per_Epoch= len(train_samples),validation_data=validation_generator, validation_steps=len(validation_samples),epochs=9) File " lib/python3.5/site-packages/keras/legacy/interfaces.py", line 88, in wrapper
return func(*args, **kwargs) File " lib/python3.5/site-packages/keras/models.py", line 1110, in fit_generator
initial_Epoch=initial_Epoch) File " lib/python3.5/site-packages/keras/legacy/interfaces.py", line 88, in wrapper
return func(*args, **kwargs) File " lib/python3.5/site-packages/keras/engine/training.py", line 1890, in fit_generator
class_weight=class_weight) File " lib/python3.5/site-packages/keras/engine/training.py", line 1633, in train_on_batch
outputs = self.train_function(ins) File " lib/python3.5/site-packages/keras/backend/tensorflow_backend.py", line 2229, in __call__
feed_dict=feed_dict) File " lib/python3.5/site-packages/tensorflow/python/client/session.py", line 766, in run
run_metadata_ptr) File " lib/python3.5/site-packages/tensorflow/python/client/session.py", line 937, in _run
np_val = np.asarray(subfeed_val, dtype=subfeed_dtype) File " lib/python3.5/site-packages/numpy/core/numeric.py", line 531, in asarray
return array(a, dtype, copy=False, order=order) MemoryError
このエラーを解決するための提案があれば感謝します。
EDIT:問題は致命的です。
uname -a
Linux ip-172-31-76-109 4.4.0-78-generic #99-Ubuntu SMP
Thu Apr 27 15:29:09 UTC 2017 x86_64 x86_64 x86_64 GNU/Linux
Sudo lshw -short
[Sudo] password for carnd:
H/W path Device Class Description
==========================================
system HVM domU
/0 bus Motherboard
/0/0 memory 96KiB BIOS
/0/401 processor Intel(R) Xeon(R) CPU E5-2670 0 @ 2.60GHz
/0/402 processor CPU
/0/403 processor CPU
/0/404 processor CPU
/0/405 processor CPU
/0/406 processor CPU
/0/407 processor CPU
/0/408 processor CPU
/0/1000 memory 15GiB System Memory
/0/1000/0 memory 15GiB DIMM RAM
/0/100 bridge 440FX - 82441FX PMC [Natoma]
/0/100/1 bridge 82371SB PIIX3 ISA [Natoma/Triton II]
/0/100/1.1 storage 82371SB PIIX3 IDE [Natoma/Triton II]
/0/100/1.3 bridge 82371AB/EB/MB PIIX4 ACPI
/0/100/2 display Gd 5446
/0/100/3 display GK104GL [GRID K520]
/0/100/1f generic Xen Platform Device
/1 eth0 network Ethernet interface
編集2:
これは、AmazonクラウドのEC2インスタンスです。そして、値-1を保持するすべてのファイル。
:/sys$ find . -name numa_node -exec cat '{}' \;
find: ‘./fs/Fuse/connections/39’: Permission denied
-1
-1
-1
-1
-1
-1
-1
find: ‘./kernel/debug’: Permission denied
EDIT3:numa_nodファイルを更新すると、NUMA関連のエラーが消えます。しかし、上記の他のすべての以前のエラーは残っています。そして再び、致命的なエラーが発生しました。
Using TensorFlow backend.
I tensorflow/stream_executor/dso_loader.cc:128] successfully opened CUDA library libcublas.so locally
I tensorflow/stream_executor/dso_loader.cc:128] successfully opened CUDA library libcudnn.so locally
I tensorflow/stream_executor/dso_loader.cc:128] successfully opened CUDA library libcufft.so locally
I tensorflow/stream_executor/dso_loader.cc:128] successfully opened CUDA library libcuda.so.1 locally
I tensorflow/stream_executor/dso_loader.cc:128] successfully opened CUDA library libcurand.so locally
Epoch 1/9
Exception in thread Thread-1:
Traceback (most recent call last):
File " lib/python3.5/threading.py", line 914, in _bootstrap_inner
self.run()
File " lib/python3.5/threading.py", line 862, in run
self._target(*self._args, **self._kwargs)
File " lib/python3.5/site-packages/keras/engine/training.py", line 612, in data_generator_task
generator_output = next(self._generator)
StopIteration
I tensorflow/core/common_runtime/gpu/gpu_device.cc:885] Found device 0 with properties:
name: GRID K520
major: 3 minor: 0 memoryClockRate (GHz) 0.797
pciBusID 0000:00:03.0
Total memory: 3.94GiB
Free memory: 3.91GiB
I tensorflow/core/common_runtime/gpu/gpu_device.cc:906] DMA: 0
I tensorflow/core/common_runtime/gpu/gpu_device.cc:916] 0: Y
I tensorflow/core/common_runtime/gpu/gpu_device.cc:975] Creating TensorFlow device (/gpu:0) -> (device: 0, name: GRID K520, pci bus id: 0000:00:03.0)
Traceback (most recent call last):
File "model_new.py", line 85, in <module>
model.fit_generator(train_generator, steps_per_Epoch= len(train_samples),validation_data=validation_generator, validation_steps=len(validation_samples),epochs=9)
File " lib/python3.5/site-packages/keras/legacy/interfaces.py", line 88, in wrapper
return func(*args, **kwargs)
File " lib/python3.5/site-packages/keras/models.py", line 1110, in fit_generator
initial_Epoch=initial_Epoch)
File " lib/python3.5/site-packages/keras/legacy/interfaces.py", line 88, in wrapper
return func(*args, **kwargs)
File " lib/python3.5/site-packages/keras/engine/training.py", line 1890, in fit_generator
class_weight=class_weight)
File " lib/python3.5/site-packages/keras/engine/training.py", line 1633, in train_on_batch
outputs = self.train_function(ins)
File " lib/python3.5/site-packages/keras/backend/tensorflow_backend.py", line 2229, in __call__
feed_dict=feed_dict)
File " lib/python3.5/site-packages/tensorflow/python/client/session.py", line 766, in run
run_metadata_ptr)
File " lib/python3.5/site-packages/tensorflow/python/client/session.py", line 937, in _run
np_val = np.asarray(subfeed_val, dtype=subfeed_dtype)
File " lib/python3.5/site-packages/numpy/core/numeric.py", line 531, in asarray
return array(a, dtype, copy=False, order=order)
MemoryError
「SysFSから読み取られた成功したNUMAノードには負の値(-1)がありました」というメッセージを出力するコードがあり、それは致命的なエラーではなく、単なる警告です。実際のエラーは、_File "model_new.py", line 85, in <module>
_のMemoryError
です。このエラーをチェックするには、さらにソースが必要です。モデルを小さくするか、RAMの多いサーバーで実行してください。
NUMAノードの警告について:
_// Attempts to read the NUMA node corresponding to the GPU device's PCI bus out
// of SysFS. Returns -1 if it cannot...
static int TryToReadNumaNode(const string &pci_bus_id, int device_ordinal)
{...
string filename =
port::Printf("/sys/bus/pci/devices/%s/numa_node", pci_bus_id.c_str());
FILE *file = fopen(filename.c_str(), "r");
if (file == nullptr) {
LOG(ERROR) << "could not open file to read NUMA node: " << filename
<< "\nYour kernel may have been built without NUMA support.";
return kUnknownNumaNode;
} ...
if (port::safe_strto32(content, &value)) {
if (value < 0) { // See http://b/18228951 for details on this path.
LOG(INFO) << "successful NUMA node read from SysFS had negative value ("
<< value << "), but there must be at least one NUMA node"
", so returning NUMA node zero";
fclose(file);
return 0;
}
_
TensorFlowは、%sがGPU PCIカードのIDである_/sys/bus/pci/devices/%s/numa_node
_ファイルを開くことができました( string pci_bus_id = CUDADriver::GetPCIBusID(device_)
)。お使いのPCはマルチソケットではなく、8コアのXeon E5-2670がインストールされたシングルCPUソケットしかないため、このIDは「0」にする必要があります(Linuxでは単一のNUMAノードは0と番号が付けられます)。このファイルの_-1
_値!
したがって、sysfsが_/sys
_にマウントされ、_numa_node
_特殊ファイルがあり、CONFIG_NUMAがLinuxカーネル構成(_zgrep NUMA /boot/config* /proc/config*
_)で有効になっていることがわかります。実際には有効になっています:_CONFIG_NUMA=y
_- x86_64 4.4.0-78-genericカーネルのdeb
特殊ファイル_numa_node
_は https://www.kernel.org/doc/Documentation/ABI/testing/sysfs-bus-pci (PCのACPIは間違っていますか?)
_What: /sys/bus/pci/devices/.../numa_node
Date: Oct 2014
Contact: Prarit Bhargava <[email protected]>
Description:
This file contains the NUMA node to which the PCI device is
attached, or -1 if the node is unknown. The initial value
comes from an ACPI _PXM method or a similar firmware
source. If that is missing or incorrect, this file can be
written to override the node. In that case, please report
a firmware bug to the system vendor. Writing to this file
taints the kernel with TAINT_FIRMWARE_WORKAROUND, which
reduces the supportability of your system.
_
このエラーの迅速な( kludge )回避策があります。GPUの_numa_node
_を見つけ、ルートアカウントを使用して、毎回の起動後にこのコマンドを実行します。NNNNNはカードのPCI IDです(検索lspci
出力および_/sys/bus/pci/devices/
_ディレクトリ)
_echo 0 | Sudo tee -a /sys/bus/pci/devices/NNNNN/numa_node
_
または単にそのようなすべてのファイルにそれをエコーします、それはかなり安全でなければなりません:
_for a in /sys/bus/pci/devices/*; do echo 0 | Sudo tee -a $a/numa_node; done
_
また、lshw
は、それがPCではなくXen仮想ゲストであることを示しています。 Xenプラットフォーム(ACPI)エミュレーションとLinux PCIバスNUMAサポートコードの間に問題があります。