私はpython pandas=を使用していくつかの大きなCSVファイルを読み取り、それをHDF5ファイルに保存します。結果のHDF5ファイルは約10GBです。問題読み返すときに発生します。チャンク単位で読み戻そうとしても、MemoryErrorが発生します。
import glob, os
import pandas as pd
hdf = pd.HDFStore('raw_sample_storage2.h5')
os.chdir("C:/RawDataCollection/raw_samples/PLB_Gate")
for filename in glob.glob("RD_*.txt"):
raw_df = pd.read_csv(filename,
sep=' ',
header=None,
names=['time', 'GW_time', 'node_id', 'X', 'Y', 'Z', 'status', 'seq', 'rssi', 'lqi'],
dtype={'GW_time': uint32, 'node_id': uint8, 'X': uint16, 'Y': uint16, 'Z':uint16, 'status': uint8, 'seq': uint8, 'rssi': int8, 'lqi': uint8},
parse_dates=['time'],
date_parser=dateparse,
chunksize=50000,
skip_blank_lines=True)
for chunk in raw_df:
hdf.append('raw_sample_all', chunk, format='table', data_columns = True, index = True, compression='blosc', complevel=9)
for df in pd.read_hdf('raw_sample_storage2.h5','raw_sample_all', chunksize=300000):
print(df.head(1))
---------------------------------------------------------------------------
MemoryError Traceback (most recent call last)
<ipython-input-7-ef278566a16b> in <module>()
----> 1 for df in pd.read_hdf('raw_sample_storage2.h5','raw_sample_all', chunksize=300000):
2 print(df.head(1))
C:\Anaconda\lib\site-packages\pandas\io\pytables.pyc in read_hdf(path_or_buf, key, **kwargs)
321 store = HDFStore(path_or_buf, **kwargs)
322 try:
--> 323 return f(store, True)
324 except:
325
C:\Anaconda\lib\site-packages\pandas\io\pytables.pyc in <lambda>(store, auto_close)
303
304 f = lambda store, auto_close: store.select(
--> 305 key, auto_close=auto_close, **kwargs)
306
307 if isinstance(path_or_buf, string_types):
C:\Anaconda\lib\site-packages\pandas\io\pytables.pyc in select(self, key, where, start, stop, columns, iterator, chunksize, auto_close, **kwargs)
663 auto_close=auto_close)
664
--> 665 return it.get_result()
666
667 def select_as_coordinates(
C:\Anaconda\lib\site-packages\pandas\io\pytables.pyc in get_result(self, coordinates)
1346 "can only use an iterator or chunksize on a table")
1347
-> 1348 self.coordinates = self.s.read_coordinates(where=self.where)
1349
1350 return self
C:\Anaconda\lib\site-packages\pandas\io\pytables.pyc in read_coordinates(self, where, start, stop, **kwargs)
3545 self.selection = Selection(
3546 self, where=where, start=start, stop=stop, **kwargs)
-> 3547 coords = self.selection.select_coords()
3548 if self.selection.filter is not None:
3549 for field, op, filt in self.selection.filter.format():
C:\Anaconda\lib\site-packages\pandas\io\pytables.pyc in select_coords(self)
4507 return self.coordinates
4508
-> 4509 return np.arange(start, stop)
4510
4511 # utilities ###
MemoryError:
INSTALLED VERSIONS
------------------
commit: None
python: 2.7.3.final.0
python-bits: 32
OS: Windows
OS-release: 7
machine: x86
processor: x86 Family 6 Model 42 Stepping 7, GenuineIntel
byteorder: little
LC_ALL: None
LANG: None
pandas: 0.15.2
nose: 1.3.4
Cython: 0.22
numpy: 1.9.2
scipy: 0.15.1
statsmodels: 0.6.1
IPython: 3.0.0
sphinx: 1.2.3
patsy: 0.3.0
dateutil: 2.4.1
pytz: 2015.2
bottleneck: None
tables: 3.1.1
numexpr: 2.3.1
matplotlib: 1.4.3
openpyxl: 1.8.5
xlrd: 0.9.3
xlwt: 0.7.5
xlsxwriter: 0.6.7
lxml: 3.4.2
bs4: 4.3.2
html5lib: None
httplib2: None
apiclient: None
rpy2: None
sqlalchemy: 0.9.9
pymysql: None
psycopg2: None
read_hdf()を実行してからMemoryErrorが発生するまで約30分かかりましたが、その間にtaskmgrを確認したところ、CPUアクティビティがほとんどなく、使用されたメモリの合計が2.2Gを超えることはありませんでした。約2.1でした。コードを実行する前のGB。したがって、pandasにロードされたRAM read_hdf()は100 MB未満です(4G RAMがあり、 32ビット-Windowsシステムは2.7Gしか使用できず、残りはRAM disk)に使用しました
これがhdfファイル情報です:
In [2]:
hdf = pd.HDFStore('raw_sample_storage2.h5')
hdf
Out[2]:
<class 'pandas.io.pytables.HDFStore'>
File path: C:/RawDataCollection/raw_samples/PLB_Gate/raw_sample_storage2.h5
/raw_sample_all frame_table (typ->appendable,nrows->308581091,ncols->10,indexers->[index],dc->[time,GW_time,node_id,X,Y,Z,status,seq,rssi,lqi])
さらに、「チャンクサイズ」の代わりに「開始」と「停止」を指定することで、hdfファイルの一部を読み取ることができます:
%%time
df = pd.read_hdf('raw_sample_storage2.h5','raw_sample_all', start=0,stop=300000)
print df.info()
print(df.head(5))
実行には4秒しかかからず、出力は次のとおりです。
<class 'pandas.core.frame.DataFrame'>
Int64Index: 300000 entries, 0 to 49999
Data columns (total 10 columns):
time 300000 non-null datetime64[ns]
GW_time 300000 non-null uint32
node_id 300000 non-null uint8
X 300000 non-null uint16
Y 300000 non-null uint16
Z 300000 non-null uint16
status 300000 non-null uint8
seq 300000 non-null uint8
rssi 300000 non-null int8
lqi 300000 non-null uint8
dtypes: datetime64[ns](1), int8(1), uint16(3), uint32(1), uint8(4)
memory usage: 8.9 MB
None
time GW_time node_id X Y Z status seq \
0 2013-10-22 17:20:58 39821761 3 20010 21716 22668 0 33
1 2013-10-22 17:20:58 39821824 4 19654 19647 19241 0 33
2 2013-10-22 17:20:58 39821888 1 16927 21438 22722 0 34
3 2013-10-22 17:20:58 39821952 2 17420 22882 20440 0 34
4 2013-10-22 17:20:58 39822017 3 20010 21716 22668 0 34
rssi lqi
0 -43 49
1 -72 47
2 -46 48
3 -57 46
4 -42 50
Wall time: 4.26 s
300000行だけが8.9 MBのRAMを消費していることに気付いたので、チャンクサイズを開始と停止と一緒に使用しようとしました:
for df in pd.read_hdf('raw_sample_storage2.h5','raw_sample_all', start=0,stop=300000,chunksize = 3000):
print df.info()
print(df.head(5))
同じMemoryErrorが発生します。
ここで何が起こっているのかわかりません。内部メカニズムがチャンクサイズ/開始/停止を無視してすべてをRAMにロードしようとすると、どうしてRAM使用量がほとんど増加しないのですか(のみ100 MB)MemoryErrorが発生したとき?そして、CPUの使用率が目立たずに、プロセスの最初の段階でエラーが発生するまでに30分かかるのはなぜですか
したがって、イテレータは主にwhere
句を処理するために構築されています。 PyTables
は、句がTrueであるインデックスのリストを返します。これらは行番号です。この場合、where句はありませんが、インデクサーを使用します。この場合は、単にnp.arange
行のリスト。
300MM行は2.2GBかかります。これは、Windows 32ビットには多すぎます(通常、最大で約1GBです)。 64ビットでは、これは問題ありません。
In [1]: np.arange(0,300000000).nbytes/(1024*1024*1024.0)
Out[1]: 2.2351741790771484
したがって、これはスライスセマンティクスによって処理する必要があります。これにより、わずかな量のメモリしか使用できなくなります。開かれた問題 ここ 。
だから私はこれをお勧めします。ここでは、インデクサーが直接計算され、これによりイテレーターのセマンティクスが提供されます。
In [1]: df = DataFrame(np.random.randn(1000,2),columns=list('AB'))
In [2]: df.to_hdf('test.h5','df',mode='w',format='table',data_columns=True)
In [3]: store = pd.HDFStore('test.h5')
In [4]: nrows = store.get_storer('df').nrows
In [6]: chunksize = 100
In [7]: for i in xrange(nrows//chunksize + 1):
chunk = store.select('df',
start=i*chunksize,
stop=(i+1)*chunksize)
# work on the chunk
In [8]: store.close()