web-dev-qa-db-ja.com

この種の画像から背景を削除するにはどうすればよいですか?

Image_1

この画像の背景を削除して、人物だけを取得したいです。このような数千の画像、基本的には人物とやや白っぽい背景があります。

私がやったのは、キャニーエッジ検出器やソーベルフィルターのようなエッジ検出器を使用することです(skimageライブラリーから)。その後、私ができると思うのは、エッジ内のピクセルを白くし、ピクセルを黒くすることです。その後、元の画像をマスクして、人物の写真のみを取得できます。

ただし、Canny Edge Detectorを使用して閉じた境界を取得するのは困難です。 Sobelフィルターを使用した結果はそれほど悪くはありませんが、そこから先に進む方法はありません。

Sobel_result

編集:

右手とスカートの間、髪の間の背景も削除できますか?

47
hans-t

次のコードで開始できます。プログラムの上部にあるパラメーターをいじって、抽出を微調整することもできます。

import cv2
import numpy as np

#== Parameters =======================================================================
BLUR = 21
CANNY_THRESH_1 = 10
CANNY_THRESH_2 = 200
MASK_DILATE_ITER = 10
MASK_ERODE_ITER = 10
MASK_COLOR = (0.0,0.0,1.0) # In BGR format


#== Processing =======================================================================

#-- Read image -----------------------------------------------------------------------
img = cv2.imread('C:/Temp/person.jpg')
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)

#-- Edge detection -------------------------------------------------------------------
edges = cv2.Canny(gray, CANNY_THRESH_1, CANNY_THRESH_2)
edges = cv2.dilate(edges, None)
edges = cv2.erode(edges, None)

#-- Find contours in edges, sort by area ---------------------------------------------
contour_info = []
_, contours, _ = cv2.findContours(edges, cv2.RETR_LIST, cv2.CHAIN_APPROX_NONE)
# Previously, for a previous version of cv2, this line was: 
#  contours, _ = cv2.findContours(edges, cv2.RETR_LIST, cv2.CHAIN_APPROX_NONE)
# Thanks to notes from commenters, I've updated the code but left this note
for c in contours:
    contour_info.append((
        c,
        cv2.isContourConvex(c),
        cv2.contourArea(c),
    ))
contour_info = sorted(contour_info, key=lambda c: c[2], reverse=True)
max_contour = contour_info[0]

#-- Create empty mask, draw filled polygon on it corresponding to largest contour ----
# Mask is black, polygon is white
mask = np.zeros(edges.shape)
cv2.fillConvexPoly(mask, max_contour[0], (255))

#-- Smooth mask, then blur it --------------------------------------------------------
mask = cv2.dilate(mask, None, iterations=MASK_DILATE_ITER)
mask = cv2.erode(mask, None, iterations=MASK_ERODE_ITER)
mask = cv2.GaussianBlur(mask, (BLUR, BLUR), 0)
mask_stack = np.dstack([mask]*3)    # Create 3-channel alpha mask

#-- Blend masked img into MASK_COLOR background --------------------------------------
mask_stack  = mask_stack.astype('float32') / 255.0          # Use float matrices, 
img         = img.astype('float32') / 255.0                 #  for easy blending

masked = (mask_stack * img) + ((1-mask_stack) * MASK_COLOR) # Blend
masked = (masked * 255).astype('uint8')                     # Convert back to 8-bit 

cv2.imshow('img', masked)                                   # Display
cv2.waitKey()

#cv2.imwrite('C:/Temp/person-masked.jpg', masked)           # Save

出力: enter image description here

67
jedwards

背景を赤色ではなく透明にしたい場合は、ソリューションに次の行を追加できます。

# split image into channels
c_red, c_green, c_blue = cv2.split(img)

# merge with mask got on one of a previous steps
img_a = cv2.merge((c_red, c_green, c_blue, mask.astype('float32') / 255.0))

# show on screen (optional in jupiter)
%matplotlib inline
plt.imshow(img_a)
plt.show()

# save to disk
cv2.imwrite('girl_1.png', img_a*255)

# or the same using plt
plt.imsave('girl_2.png', img_a)

必要に応じて、いくつかのpng圧縮パラメータを調整して、ファイルを小さくすることができます。

下の白い背景の画像。または黒いもの http://imgur.com/a/4NwmH

enter image description here

29
Eugene Lisitsky

別の方法として、次のようなニューラルネットワークを使用できます: [〜#〜] crfrnn [〜#〜]

次のような結果が得られます。

enter image description here

14
Andrey Smorodov

enter image description here vs2017の使用例。
背景を赤に設定しますが、青は保存します。
透明な例も追加しました。

どうすれば女の子の体を削除し、写真にドレスだけを残すことができますか?アイデアはありますか?

# == https://stackoverflow.com/questions/29313667/how-do-i-remove-the-background-from-this-kind-of-image

import cv2
import numpy as np
from matplotlib import pyplot as plt

#== Parameters =======================================================================
BLUR = 21
CANNY_THRESH_1 = 10
CANNY_THRESH_2 = 200
MASK_DILATE_ITER = 10
MASK_ERODE_ITER = 10
MASK_COLOR = (0.0,0.0,1.0) # In BGR format


#== Processing =======================================================================

#-- Read image -----------------------------------------------------------------------
img = cv2.imread('img/SYxmp.jpg')
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)

#-- Edge detection -------------------------------------------------------------------
edges = cv2.Canny(gray, CANNY_THRESH_1, CANNY_THRESH_2)
edges = cv2.dilate(edges, None)
edges = cv2.erode(edges, None)

#-- Find contours in edges, sort by area ---------------------------------------------
contour_info = []
_, contours, _ = cv2.findContours(edges, cv2.RETR_LIST, cv2.CHAIN_APPROX_NONE)
for c in contours:
    contour_info.append((
        c,
        cv2.isContourConvex(c),
        cv2.contourArea(c),
    ))
contour_info = sorted(contour_info, key=lambda c: c[2], reverse=True)
max_contour = contour_info[0]

#-- Create empty mask, draw filled polygon on it corresponding to largest contour ----
# Mask is black, polygon is white
mask = np.zeros(edges.shape)
cv2.fillConvexPoly(mask, max_contour[0], (255))



#-- Smooth mask, then blur it --------------------------------------------------------
mask = cv2.dilate(mask, None, iterations=MASK_DILATE_ITER)
mask = cv2.erode(mask, None, iterations=MASK_ERODE_ITER)
mask = cv2.GaussianBlur(mask, (BLUR, BLUR), 0)

mask_stack = np.dstack([mask]*3)    # Create 3-channel alpha mask

#-- Blend masked img into MASK_COLOR background --------------------------------------
mask_stack  = mask_stack.astype('float32') / 255.0          # Use float matrices, 
img         = img.astype('float32') / 255.0                 #  for easy blending

masked = (mask_stack * img) + ((1-mask_stack) * MASK_COLOR) # Blend
masked = (masked * 255).astype('uint8')                     # Convert back to 8-bit 

plt.imsave('img/girl_blue.png', masked)
# split image into channels
c_red, c_green, c_blue = cv2.split(img)

# merge with mask got on one of a previous steps
img_a = cv2.merge((c_red, c_green, c_blue, mask.astype('float32') / 255.0))

# show on screen (optional in jupiter)
#%matplotlib inline
plt.imshow(img_a)
plt.show()

# save to disk
cv2.imwrite('img/girl_1.png', img_a*255)

# or the same using plt
plt.imsave('img/girl_2.png', img_a)

cv2.imshow('img', masked)                                   # Displays red, saves blue

cv2.waitKey()
  • (必要に応じて)不完全なエッジを取得した後、閉じた形態(膨張と侵食のシーケンス)を実行できます(エッジのニーズ/状態に基づいてサイズと反復を設定する必要があります)。

  • 被写体の周りに常に一定のエッジがあると仮定して、任意のタイプの塗りつぶしアルゴリズム(ブロブ)を使用して、エッジ付きオブジェクトの外側のすべてのポイントを結合し、そのネガを使用してオブジェクトの内側のマスクを提供します。

1