web-dev-qa-db-ja.com

バイナリツリーの実装方法

Pythonでバイナリツリーを実装するために使用できる最適なデータ構造はどれですか?

89
Bruce

ここに、バイナリツリーの単純な再帰的な実装を示します。

#!/usr/bin/python

class Node:
    def __init__(self, val):
        self.l = None
        self.r = None
        self.v = val

class Tree:
    def __init__(self):
        self.root = None

    def getRoot(self):
        return self.root

    def add(self, val):
        if(self.root == None):
            self.root = Node(val)
        else:
            self._add(val, self.root)

    def _add(self, val, node):
        if(val < node.v):
            if(node.l != None):
                self._add(val, node.l)
            else:
                node.l = Node(val)
        else:
            if(node.r != None):
                self._add(val, node.r)
            else:
                node.r = Node(val)

    def find(self, val):
        if(self.root != None):
            return self._find(val, self.root)
        else:
            return None

    def _find(self, val, node):
        if(val == node.v):
            return node
        Elif(val < node.v and node.l != None):
            self._find(val, node.l)
        Elif(val > node.v and node.r != None):
            self._find(val, node.r)

    def deleteTree(self):
        # garbage collector will do this for us. 
        self.root = None

    def printTree(self):
        if(self.root != None):
            self._printTree(self.root)

    def _printTree(self, node):
        if(node != None):
            self._printTree(node.l)
            print str(node.v) + ' '
            self._printTree(node.r)

#     3
# 0     4
#   2      8
tree = Tree()
tree.add(3)
tree.add(4)
tree.add(0)
tree.add(8)
tree.add(2)
tree.printTree()
print (tree.find(3)).v
print tree.find(10)
tree.deleteTree()
tree.printTree()
76
djra
# simple binary tree
# in this implementation, a node is inserted between an existing node and the root


class BinaryTree():

    def __init__(self,rootid):
      self.left = None
      self.right = None
      self.rootid = rootid

    def getLeftChild(self):
        return self.left
    def getRightChild(self):
        return self.right
    def setNodeValue(self,value):
        self.rootid = value
    def getNodeValue(self):
        return self.rootid

    def insertRight(self,newNode):
        if self.right == None:
            self.right = BinaryTree(newNode)
        else:
            tree = BinaryTree(newNode)
            tree.right = self.right
            self.right = tree

    def insertLeft(self,newNode):
        if self.left == None:
            self.left = BinaryTree(newNode)
        else:
            tree = BinaryTree(newNode)
            tree.left = self.left
            self.left = tree


def printTree(tree):
        if tree != None:
            printTree(tree.getLeftChild())
            print(tree.getNodeValue())
            printTree(tree.getRightChild())



# test tree

def testTree():
    myTree = BinaryTree("Maud")
    myTree.insertLeft("Bob")
    myTree.insertRight("Tony")
    myTree.insertRight("Steven")
    printTree(myTree)

詳細はこちら:-これは非常に単純な 実装 のバイナリツリーです。

これ は、間に質問がある素敵なチュートリアルです

27
Rahul

PythonでのBSTの簡単な実装

class TreeNode:
    def __init__(self, value):
        self.left = None
        self.right = None
        self.data = value

class Tree:
    def __init__(self):
        self.root = None

    def addNode(self, node, value):
        if(node==None):
            self.root = TreeNode(value)
        else:
            if(value<node.data):
                if(node.left==None):
                    node.left = TreeNode(value)
                else:
                    self.addNode(node.left, value)
            else:
                if(node.right==None):
                    node.right = TreeNode(value)
                else:
                    self.addNode(node.right, value)

    def printInorder(self, node):
        if(node!=None):
            self.printInorder(node.left)
            print(node.data)
            self.printInorder(node.right)

def main():
    testTree = Tree()
    testTree.addNode(testTree.root, 200)
    testTree.addNode(testTree.root, 300)
    testTree.addNode(testTree.root, 100)
    testTree.addNode(testTree.root, 30)
    testTree.printInorder(testTree.root)
9
Fox

リストを使用してバイナリツリーを実装する非常に簡単な方法です。最も効率的ではなく、nil値をうまく処理しません。しかし、それは非常に透明です(少なくとも私にとって):

def _add(node, v):
    new = [v, [], []]
    if node:
        left, right = node[1:]
        if not left:
            left.extend(new)
        Elif not right:
            right.extend(new)
        else:
            _add(left, v)
    else:
        node.extend(new)

def binary_tree(s):
    root = []
    for e in s:
        _add(root, e)
    return root

def traverse(n, order):
    if n:
        v = n[0]
        if order == 'pre':
            yield v
        for left in traverse(n[1], order):
            yield left
        if order == 'in':
            yield v
        for right in traverse(n[2], order):
            yield right
        if order == 'post':
            yield v

反復可能からツリーを構築する:

 >>> tree = binary_tree('A B C D E'.split())
 >>> print tree
 ['A', ['B', ['D', [], []], ['E', [], []]], ['C', [], []]]

木を横断する:

 >>> list(traverse(tree, 'pre')), list(traverse(tree, 'in')), list(traverse(tree, 'post'))
 (['A', 'B', 'D', 'E', 'C'],
  ['D', 'B', 'E', 'A', 'C'],
  ['D', 'E', 'B', 'C', 'A'])
7
p7k

ここでの答えのほとんどがバイナリ検索ツリーの実装であることに気づかずにはいられません。バイナリ検索ツリー!=バイナリツリー。

  • バイナリ検索ツリーには非常に特殊なプロパティがあります。ノードXの場合、Xのキーは左の子の子孫のキーよりも大きく、右の子の子孫のキーよりも小さくなります。

  • 二分木はそのような制限を課しません。バイナリツリーは、単に「キー」要素と、「左」と「右」という2つの子を持つデータ構造です。

  • ツリーは、各ノードが任意の数の子を持つことができるバイナリツリーのさらに一般的なケースです。通常、各ノードには、リスト/配列タイプの「子」要素があります。

さて、OPの質問に答えるために、Pythonでのバイナリツリーの完全な実装を含めます。各BinaryTreeNodeを格納する基礎となるデータ構造は、最適なO(1)ルックアップを提供する場合、辞書です。また、深さ優先および幅優先のトラバーサルも実装しました。これらは、ツリーで実行される非常に一般的な操作です。

from collections import deque

class BinaryTreeNode:
    def __init__(self, key, left=None, right=None):
        self.key = key
        self.left = left
        self.right = right

    def __repr__(self):
        return "%s l: (%s) r: (%s)" % (self.key, self.left, self.right)

    def __eq__(self, other):
        if self.key == other.key and \
            self.right == other.right and \
                self.left == other.left:
            return True
        else:
            return False

class BinaryTree:
    def __init__(self, root_key=None):
        # maps from BinaryTreeNode key to BinaryTreeNode instance.
        # Thus, BinaryTreeNode keys must be unique.
        self.nodes = {}
        if root_key is not None:
            # create a root BinaryTreeNode
            self.root = BinaryTreeNode(root_key)
            self.nodes[root_key] = self.root

    def add(self, key, left_key=None, right_key=None):
        if key not in self.nodes:
            # BinaryTreeNode with given key does not exist, create it
            self.nodes[key] = BinaryTreeNode(key)
        # invariant: self.nodes[key] exists

        # handle left child
        if left_key is None:
            self.nodes[key].left = None
        else:
            if left_key not in self.nodes:
                self.nodes[left_key] = BinaryTreeNode(left_key)
            # invariant: self.nodes[left_key] exists
            self.nodes[key].left = self.nodes[left_key]

        # handle right child
        if right_key == None:
            self.nodes[key].right = None
        else:
            if right_key not in self.nodes:
                self.nodes[right_key] = BinaryTreeNode(right_key)
            # invariant: self.nodes[right_key] exists
            self.nodes[key].right = self.nodes[right_key]

    def remove(self, key):
        if key not in self.nodes:
            raise ValueError('%s not in tree' % key)
        # remove key from the list of nodes
        del self.nodes[key]
        # if node removed is left/right child, update parent node
        for k in self.nodes:
            if self.nodes[k].left and self.nodes[k].left.key == key:
                self.nodes[k].left = None
            if self.nodes[k].right and self.nodes[k].right.key == key:
                self.nodes[k].right = None
        return True

    def _height(self, node):
        if node is None:
            return 0
        else:
            return 1 + max(self._height(node.left), self._height(node.right))

    def height(self):
        return self._height(self.root)

    def size(self):
        return len(self.nodes)

    def __repr__(self):
        return str(self.traverse_inorder(self.root))

    def bfs(self, node):
        if not node or node not in self.nodes:
            return
        reachable = []    
        q = deque()
        # add starting node to queue
        q.append(node)
        while len(q):
            visit = q.popleft()
            # add currently visited BinaryTreeNode to list
            reachable.append(visit)
            # add left/right children as needed
            if visit.left:
                q.append(visit.left)
            if visit.right:
                q.append(visit.right)
        return reachable

    # visit left child, root, then right child
    def traverse_inorder(self, node, reachable=None):
        if not node or node.key not in self.nodes:
            return
        if reachable is None:
            reachable = []
        self.traverse_inorder(node.left, reachable)
        reachable.append(node.key)
        self.traverse_inorder(node.right, reachable)
        return reachable

    # visit left and right children, then root
    # root of tree is always last to be visited
    def traverse_postorder(self, node, reachable=None):
        if not node or node.key not in self.nodes:
            return
        if reachable is None:
            reachable = []
        self.traverse_postorder(node.left, reachable)
        self.traverse_postorder(node.right, reachable)
        reachable.append(node.key)
        return reachable

    # visit root, left, then right children
    # root is always visited first
    def traverse_preorder(self, node, reachable=None):
        if not node or node.key not in self.nodes:
            return
        if reachable is None:
            reachable = []
        reachable.append(node.key)
        self.traverse_preorder(node.left, reachable)
        self.traverse_preorder(node.right, reachable)
        return reachable
5

あなたは2つのクラスを持つ必要はありません

class Tree:
    val = None
    left = None
    right = None

    def __init__(self, val):
        self.val = val


    def insert(self, val):
        if self.val is not None:
            if val < self.val:
                if self.left is not None:
                    self.left.insert(val)
                else:
                    self.left = Tree(val)
            Elif val > self.val:
                if self.right is not None:
                    self.right.insert(val)
                else:
                    self.right = Tree(val)
            else:
                return
        else:
            self.val = val
            print("new node added")

    def showTree(self):
        if self.left is not None:
            self.left.showTree()
        print(self.val, end = ' ')
        if self.right is not None:
            self.right.showTree()
3
dshri

[インタビューに必要なもの] Nodeクラスは、バイナリツリーを表すのに最低限必要なものです。

(他の答えはほとんど正解ですが、バイナリツリーではオブジェクトクラスを拡張する必要も、BSTである必要もなく、両端キューをインポートする必要もありません)。

class Node:

    def __init__(self, value = None):
        self.left  = None
        self.right = None
        self.value = value

ツリーの例を次に示します。

n1 = Node(1)
n2 = Node(2)
n3 = Node(3)
n1.left  = n2
n1.right = n3

この例では、n1は、n2、n3を子として持つツリーのルートです。

enter image description here

2
apadana

もう少し「Pythonic」?

class Node:
    def __init__(self, value):
        self.value = value
        self.left = None
        self.right = None

    def __repr__(self):
        return str(self.value)



class BST:
    def __init__(self):
        self.root = None

    def __repr__(self):
        self.sorted = []
        self.get_inorder(self.root)
        return str(self.sorted)

    def get_inorder(self, node):
        if node:
            self.get_inorder(node.left)
            self.sorted.append(str(node.value))
            self.get_inorder(node.right)

    def add(self, value):
        if not self.root:
            self.root = Node(value)
        else:
            self._add(self.root, value)

    def _add(self, node, value):
        if value <= node.value:
            if node.left:
                self._add(node.left, value)
            else:
                node.left = Node(value)
        else:
            if node.right:
                self._add(node.right, value)
            else:
                node.right = Node(value)



from random import randint

bst = BST()

for i in range(100):
    bst.add(randint(1, 1000))
print (bst)
2
binithb
#!/usr/bin/python

class BinaryTree:
    def __init__(self, left, right, data):
        self.left = left
        self.right = right
        self.data = data


    def pre_order_traversal(root):
        print(root.data, end=' ')

        if root.left != None:
            pre_order_traversal(root.left)

        if root.right != None:
            pre_order_traversal(root.right)

    def in_order_traversal(root):
        if root.left != None:
            in_order_traversal(root.left)
        print(root.data, end=' ')
        if root.right != None:
            in_order_traversal(root.right)

    def post_order_traversal(root):
        if root.left != None:
            post_order_traversal(root.left)
        if root.right != None:
            post_order_traversal(root.right)
        print(root.data, end=' ')
2
shanks

私は多くの良い解決策がすでに投稿されていることを知っていますが、私は通常バイナリツリーに異なるアプローチを持っています:Nodeクラスを使用して直接実装する方が読みやすいですが、多くのノードがある場合は非常になりますメモリに貪欲なので、1つの複雑さの層を追加し、pythonリストにノードを保存し、リストのみを使用してツリーの動作をシミュレートすることをお勧めします。

Nodeクラスを定義して、必要に応じてツリー内のノードを最終的に表すこともできますが、リスト内の単純な形式[値、左、右]を維持すると、メモリの半分以下を使用できます!

以下は、ノードを配列に格納するバイナリ検索ツリークラスの簡単な例です。追加、削除、検索などの基本的な機能を提供します...

"""
Basic Binary Search Tree class without recursion...
"""

__author__ = "@fbparis"

class Node(object):
    __slots__ = "value", "parent", "left", "right"
    def __init__(self, value, parent=None, left=None, right=None):
        self.value = value
        self.parent = parent
        self.left = left
        self.right = right

    def __repr__(self):
        return "<%s object at %s: parent=%s, left=%s, right=%s, value=%s>" % (self.__class__.__name__, hex(id(self)), self.parent, self.left, self.right, self.value)

class BinarySearchTree(object):
    __slots__ = "_tree"
    def __init__(self, *args):
        self._tree = []
        if args:
            for x in args[0]:
                self.add(x)

    def __len__(self):
        return len(self._tree)

    def __repr__(self):
        return "<%s object at %s with %d nodes>" % (self.__class__.__name__, hex(id(self)), len(self))

    def __str__(self, nodes=None, level=0):
        ret = ""
        if nodes is None:
            if len(self):
                nodes = [0]
            else:
                nodes = []
        for node in nodes:
            if node is None:
                continue
            ret += "-" * level + " %s\n" % self._tree[node][0]
            ret += self.__str__(self._tree[node][2:4], level + 1)
        if level == 0:
            ret = ret.strip()
        return ret

    def __contains__(self, value):
        if len(self):
            node_index = 0
            while self._tree[node_index][0] != value:
                if value < self._tree[node_index][0]:
                    node_index = self._tree[node_index][2]
                else:
                    node_index = self._tree[node_index][3]
                if node_index is None:
                    return False
            return True
        return False

    def __eq__(self, other):
        return self._tree == other._tree

    def add(self, value):
        if len(self):
            node_index = 0
            while self._tree[node_index][0] != value:
                if value < self._tree[node_index][0]:
                    b = self._tree[node_index][2]
                    k = 2
                else:
                    b = self._tree[node_index][3]
                    k = 3
                if b is None:
                    self._tree[node_index][k] = len(self)
                    self._tree.append([value, node_index, None, None])
                    break
                node_index = b
        else:
            self._tree.append([value, None, None, None])

    def remove(self, value):
        if len(self):
            node_index = 0
            while self._tree[node_index][0] != value:
                if value < self._tree[node_index][0]:
                    node_index = self._tree[node_index][2]
                else:
                    node_index = self._tree[node_index][3]
                if node_index is None:
                    raise KeyError
            if self._tree[node_index][2] is not None:
                b, d = 2, 3
            Elif self._tree[node_index][3] is not None:
                b, d = 3, 2
            else:
                i = node_index
                b = None
            if b is not None:
                i = self._tree[node_index][b]
                while self._tree[i][d] is not None:
                    i = self._tree[i][d]
                p = self._tree[i][1]
                b = self._tree[i][b]
                if p == node_index:
                    self._tree[p][5-d] = b
                else:
                    self._tree[p][d] = b
                if b is not None:
                    self._tree[b][1] = p
                self._tree[node_index][0] = self._tree[i][0]
            else:
                p = self._tree[i][1]
                if p is not None:
                    if self._tree[p][2] == i:
                        self._tree[p][2] = None
                    else:
                        self._tree[p][3] = None
            last = self._tree.pop()
            n = len(self)
            if i < n:
                self._tree[i] = last[:]
                if last[2] is not None:
                    self._tree[last[2]][1] = i
                if last[3] is not None:
                    self._tree[last[3]][1] = i
                if self._tree[last[1]][2] == n:
                    self._tree[last[1]][2] = i
                else:
                    self._tree[last[1]][3] = i
        else:
            raise KeyError

    def find(self, value):
        if len(self):
            node_index = 0
            while self._tree[node_index][0] != value:
                if value < self._tree[node_index][0]:
                    node_index = self._tree[node_index][2]
                else:
                    node_index = self._tree[node_index][3]
                if node_index is None:
                    return None
            return Node(*self._tree[node_index])
        return None

ノードを削除してBST構造を維持できるように、親属性を追加しました。

読みやすさ、特に「削除」機能については申し訳ありません。基本的に、ノードが削除されると、ツリー配列をポップして最後の要素に置き換えます(最後のノードを削除する場合を除く)。 BST構造を維持するために、削除されたノードは左の子の最大値または右の子の最小値に置き換えられ、インデックスを有効に保つためにいくつかの操作を行う必要がありますが、十分に高速です。

私はこのテクニックをより高度なものに使用して、内部基数トライを持ついくつかのビッグワード辞書を作成し、メモリ消費を7-8で割ることができました(例を参照できます: https://Gist.github .com/fbparis/b3ddd5673b603b42c880974b23db7cda

1
fbparis
import random

class TreeNode:
    def __init__(self, key):
        self.key = key
        self.left = None
        self.right = None
        self.p = None

class BinaryTree:
    def __init__(self):
        self.root = None

    def length(self):
        return self.size

    def inorder(self, node):
        if node == None:
            return None
        else:
            self.inorder(node.left)
            print node.key,
            self.inorder(node.right)

    def search(self, k):
        node = self.root
        while node != None:
            if node.key == k:
                return node
            if node.key > k:
                node = node.left
            else:
                node = node.right
        return None

    def minimum(self, node):
        x = None
        while node.left != None:
            x = node.left
            node = node.left
        return x

    def maximum(self, node):
        x = None
        while node.right != None:
            x = node.right
            node = node.right
        return x

    def successor(self, node):
        parent = None
        if node.right != None:
            return self.minimum(node.right)
        parent = node.p
        while parent != None and node == parent.right:
            node = parent
            parent = parent.p
        return parent

    def predecessor(self, node):
        parent = None
        if node.left != None:
            return self.maximum(node.left)
        parent = node.p
        while parent != None and node == parent.left:
            node = parent
            parent = parent.p
        return parent

    def insert(self, k):
        t = TreeNode(k)
        parent = None
        node = self.root
        while node != None:
            parent = node
            if node.key > t.key:
                node = node.left
            else:
                node = node.right
        t.p = parent
        if parent == None:
            self.root = t
        Elif t.key < parent.key:
            parent.left = t
        else:
            parent.right = t
        return t


    def delete(self, node):
        if node.left == None:
            self.transplant(node, node.right)
        Elif node.right == None:
            self.transplant(node, node.left)
        else:
            succ = self.minimum(node.right)
            if succ.p != node:
                self.transplant(succ, succ.right)
                succ.right = node.right
                succ.right.p = succ
            self.transplant(node, succ)
            succ.left = node.left
            succ.left.p = succ

    def transplant(self, node, newnode):
        if node.p == None:
            self.root = newnode
        Elif node == node.p.left:
            node.p.left = newnode
        else:
            node.p.right = newnode
        if newnode != None:
            newnode.p = node.p
1
water0

接続されたノードのNodeベースのクラスは、標準的なアプローチです。これらは視覚化が難しい場合があります。

Python Patterns-Implementing Graphs essay から動機付けられた、簡単な辞書を考えてみましょう。

Given

二分木

               a
              / \
             b   c
            / \   \
           d   e   f

コード

unique ノードの辞書を作成します。

tree = {
   "a": ["b", "c"],
   "b": ["d", "e"],
   "c": [None, "f"],
   "d": [None, None],
   "e": [None, None],
   "f": [None, None],
}

詳細

  • 各キーと値のペアは、その子を指す一意のノードです。
  • リスト(またはタプル)は、左/右の子の順序付けられたペアを保持します。
  • dictに順序付き挿入がある場合、最初のエントリがルートであると想定します。
  • 一般的なメソッドは、dictを変更またはトラバースする関数です( find_all_paths() を参照)。

ツリーベースの機能には、多くの場合、次の一般的な操作が含まれます。

  • traverse :各ノードを特定の順序で生成します(通常は左から右)
    • 幅優先検索(BFS):トラバースレベル
    • 深さ優先検索(DFS):ブランチを最初にトラバースします(前/後/後順)
  • insert :子の数に応じてノードをツリーに追加します
  • remove :子の数に応じてノードを削除します
  • update :不足しているノードをあるツリーから別のツリーにマージします
  • visit :トラバースされたノードの値を生成します

これらすべての操作を実装してみてください。ここでは、これらの関数の one を示します-BFSトラバーサル:

import collections as ct


def traverse(tree):
    """Yield nodes from a tree via BFS."""
    q = ct.deque()                                         # 1
    root = next(iter(tree))                                # 2
    q.append(root)

    while q:
        node = q.popleft()
        children = filter(None, tree.get(node))
        for n in children:                                 # 3 
            q.append(n)
        yield node
list(traverse(tree))
# ['a', 'b', 'c', 'd', 'e', 'f']

これは、ノードと子の辞書に適用される 幅優先検索(レベル順)アルゴリズム です。

  1. FIFOキュー を初期化します。 deque を使用しますが、 queue またはlistは機能します(後者は非効率的です)。
  2. ルートノードを取得してキューに登録します(ルートが辞書の最初のエントリ、Python 3.6+であると想定)。
  3. ノードを繰り返しデキューし、その子をキューに入れて、ノード値を生成します。

木に関するこの詳細な tutorial も参照してください。


Insight

一般にトラバーサルについて素晴らしいことは、キューを stack に置き換えるだけで、 depth-first search(DFS) への後者の反復アプローチを簡単に変更できることです。別名LIFO Queue)。これは単に、エンキューした側と同じ側からデキューすることを意味します。 DFSを使用すると、各ブランチを検索できます。

どうやって? dequeを使用しているため、node = q.popleft()node = q.pop()に変更してスタックをエミュレートできます(右)。結果は、右向きの pre-ordered DFS['a', 'c', 'f', 'b', 'e', 'd']です。

1
pylang

この実装は、ツリーの構造を破壊することなく、挿入、検索、および削除の操作をサポートします。これはバランサードツリーではありません。

# Class for construct the nodes of the tree. (Subtrees)
class Node:
def __init__(self, key, parent_node = None):
    self.left = None
    self.right = None
    self.key = key
    if parent_node == None:
        self.parent = self
    else:
        self.parent = parent_node

# Class with the  structure of the tree. 
# This Tree is not balanced.
class Tree:
def __init__(self):
    self.root = None

# Insert a single element
def insert(self, x):
    if(self.root == None):
        self.root = Node(x)
    else:
        self._insert(x, self.root)

def _insert(self, x, node):
    if(x < node.key):
        if(node.left == None):
            node.left = Node(x, node)
        else:
            self._insert(x, node.left)
    else:
        if(node.right == None):
            node.right = Node(x, node)
        else:
            self._insert(x, node.right)

# Given a element, return a node in the tree with key x. 
def find(self, x):
    if(self.root == None):
        return None
    else:
        return self._find(x, self.root)
def _find(self, x, node):
    if(x == node.key):
        return node
    Elif(x < node.key):
        if(node.left == None):
            return None
        else:
            return self._find(x, node.left)
    Elif(x > node.key):
        if(node.right == None):
            return None
        else:
            return self._find(x, node.right)

# Given a node, return the node in the tree with the next largest element.
def next(self, node):
    if node.right != None:
        return self._left_descendant(node.right)
    else:
        return self._right_ancestor(node)

def _left_descendant(self, node):
    if node.left == None:
        return node
    else:
        return self._left_descendant(node.left)

def _right_ancestor(self, node):
    if node.key <= node.parent.key:
        return node.parent
    else:
        return self._right_ancestor(node.parent)

# Delete an element of the tree
def delete(self, x):
    node = self.find(x)
    if node == None:
        print(x, "isn't in the tree")
    else:
        if node.right == None:
            if node.left == None:
                if node.key < node.parent.key:
                    node.parent.left = None
                    del node # Clean garbage
                else:
                    node.parent.right = None
                    del Node # Clean garbage
            else:
                node.key = node.left.key
                node.left = None
        else:
            x = self.next(node)
            node.key = x.key
            x = None


# tests
t = Tree()
t.insert(5)
t.insert(8)
t.insert(3)
t.insert(4)
t.insert(6)
t.insert(2)

t.delete(8)
t.delete(5)

t.insert(9)
t.insert(1)

t.delete(2)
t.delete(100)

# Remember: Find method return the node object. 
# To return a number use t.find(nº).key
# But it will cause an error if the number is not in the tree.
print(t.find(5)) 
print(t.find(8))
print(t.find(4))
print(t.find(6))
print(t.find(9))
0

here から取得したバイナリsearchツリーの適切な実装

'''
A binary search Tree
'''
from __future__ import print_function
class Node:

    def __init__(self, label, parent):
        self.label = label
        self.left = None
        self.right = None
        #Added in order to delete a node easier
        self.parent = parent

    def getLabel(self):
        return self.label

    def setLabel(self, label):
        self.label = label

    def getLeft(self):
        return self.left

    def setLeft(self, left):
        self.left = left

    def getRight(self):
        return self.right

    def setRight(self, right):
        self.right = right

    def getParent(self):
        return self.parent

    def setParent(self, parent):
        self.parent = parent

class BinarySearchTree:

    def __init__(self):
        self.root = None

    def insert(self, label):
        # Create a new Node
        new_node = Node(label, None)
        # If Tree is empty
        if self.empty():
            self.root = new_node
        else:
            #If Tree is not empty
            curr_node = self.root
            #While we don't get to a leaf
            while curr_node is not None:
                #We keep reference of the parent node
                parent_node = curr_node
                #If node label is less than current node
                if new_node.getLabel() < curr_node.getLabel():
                #We go left
                    curr_node = curr_node.getLeft()
                else:
                    #Else we go right
                    curr_node = curr_node.getRight()
            #We insert the new node in a leaf
            if new_node.getLabel() < parent_node.getLabel():
                parent_node.setLeft(new_node)
            else:
                parent_node.setRight(new_node)
            #Set parent to the new node
            new_node.setParent(parent_node)      

    def delete(self, label):
        if (not self.empty()):
            #Look for the node with that label
            node = self.getNode(label)
            #If the node exists
            if(node is not None):
                #If it has no children
                if(node.getLeft() is None and node.getRight() is None):
                    self.__reassignNodes(node, None)
                    node = None
                #Has only right children
                Elif(node.getLeft() is None and node.getRight() is not None):
                    self.__reassignNodes(node, node.getRight())
                #Has only left children
                Elif(node.getLeft() is not None and node.getRight() is None):
                    self.__reassignNodes(node, node.getLeft())
                #Has two children
                else:
                    #Gets the max value of the left branch
                    tmpNode = self.getMax(node.getLeft())
                    #Deletes the tmpNode
                    self.delete(tmpNode.getLabel())
                    #Assigns the value to the node to delete and keesp tree structure
                    node.setLabel(tmpNode.getLabel())

    def getNode(self, label):
        curr_node = None
        #If the tree is not empty
        if(not self.empty()):
            #Get tree root
            curr_node = self.getRoot()
            #While we don't find the node we look for
            #I am using lazy evaluation here to avoid NoneType Attribute error
            while curr_node is not None and curr_node.getLabel() is not label:
                #If node label is less than current node
                if label < curr_node.getLabel():
                    #We go left
                    curr_node = curr_node.getLeft()
                else:
                    #Else we go right
                    curr_node = curr_node.getRight()
        return curr_node

    def getMax(self, root = None):
        if(root is not None):
            curr_node = root
        else:
            #We go deep on the right branch
            curr_node = self.getRoot()
        if(not self.empty()):
            while(curr_node.getRight() is not None):
                curr_node = curr_node.getRight()
        return curr_node

    def getMin(self, root = None):
        if(root is not None):
            curr_node = root
        else:
            #We go deep on the left branch
            curr_node = self.getRoot()
        if(not self.empty()):
            curr_node = self.getRoot()
            while(curr_node.getLeft() is not None):
                curr_node = curr_node.getLeft()
        return curr_node

    def empty(self):
        if self.root is None:
            return True
        return False

    def __InOrderTraversal(self, curr_node):
        nodeList = []
        if curr_node is not None:
            nodeList.insert(0, curr_node)
            nodeList = nodeList + self.__InOrderTraversal(curr_node.getLeft())
            nodeList = nodeList + self.__InOrderTraversal(curr_node.getRight())
        return nodeList

    def getRoot(self):
        return self.root

    def __isRightChildren(self, node):
        if(node == node.getParent().getRight()):
            return True
        return False

    def __reassignNodes(self, node, newChildren):
        if(newChildren is not None):
            newChildren.setParent(node.getParent())
        if(node.getParent() is not None):
            #If it is the Right Children
            if(self.__isRightChildren(node)):
                node.getParent().setRight(newChildren)
            else:
                #Else it is the left children
                node.getParent().setLeft(newChildren)

    #This function traversal the tree. By default it returns an
    #In order traversal list. You can pass a function to traversal
    #The tree as needed by client code
    def traversalTree(self, traversalFunction = None, root = None):
        if(traversalFunction is None):
            #Returns a list of nodes in preOrder by default
            return self.__InOrderTraversal(self.root)
        else:
            #Returns a list of nodes in the order that the users wants to
            return traversalFunction(self.root)

    #Returns an string of all the nodes labels in the list 
    #In Order Traversal
    def __str__(self):
        list = self.__InOrderTraversal(self.root)
        str = ""
        for x in list:
            str = str + " " + x.getLabel().__str__()
        return str

def InPreOrder(curr_node):
    nodeList = []
    if curr_node is not None:
        nodeList = nodeList + InPreOrder(curr_node.getLeft())
        nodeList.insert(0, curr_node.getLabel())
        nodeList = nodeList + InPreOrder(curr_node.getRight())
    return nodeList

def testBinarySearchTree():
    r'''
    Example
                  8
                 / \
                3   10
               / \    \
              1   6    14
                 / \   /
                4   7 13 
    '''

    r'''
    Example After Deletion
                  7
                 / \
                1   4

    '''
    t = BinarySearchTree()
    t.insert(8)
    t.insert(3)
    t.insert(6)
    t.insert(1)
    t.insert(10)
    t.insert(14)
    t.insert(13)
    t.insert(4)
    t.insert(7)

    #Prints all the elements of the list in order traversal
    print(t.__str__())

    if(t.getNode(6) is not None):
        print("The label 6 exists")
    else:
        print("The label 6 doesn't exist")

    if(t.getNode(-1) is not None):
        print("The label -1 exists")
    else:
        print("The label -1 doesn't exist")

    if(not t.empty()):
        print(("Max Value: ", t.getMax().getLabel()))
        print(("Min Value: ", t.getMin().getLabel()))

    t.delete(13)
    t.delete(10)
    t.delete(8)
    t.delete(3)
    t.delete(6)
    t.delete(14)

    #Gets all the elements of the tree In pre order
    #And it prints them
    list = t.traversalTree(InPreOrder, t.root)
    for x in list:
        print(x)

if __== "__main__":
    testBinarySearchTree()
0
Alon Gouldman