PythonのパイプラインとGridSearchCVで次の例を読みました: http://www.davidsbatista.net/blog/2017/04/01/document_classification/
ロジスティック回帰:
pipeline = Pipeline([
('tfidf', TfidfVectorizer(stop_words=stop_words)),
('clf', OneVsRestClassifier(LogisticRegression(solver='sag')),
])
parameters = {
'tfidf__max_df': (0.25, 0.5, 0.75),
'tfidf__ngram_range': [(1, 1), (1, 2), (1, 3)],
"clf__estimator__C": [0.01, 0.1, 1],
"clf__estimator__class_weight": ['balanced', None],
}
SVM:
pipeline = Pipeline([
('tfidf', TfidfVectorizer(stop_words=stop_words)),
('clf', OneVsRestClassifier(LinearSVC()),
])
parameters = {
'tfidf__max_df': (0.25, 0.5, 0.75),
'tfidf__ngram_range': [(1, 1), (1, 2), (1, 3)],
"clf__estimator__C": [0.01, 0.1, 1],
"clf__estimator__class_weight": ['balanced', None],
}
ロジスティック回帰とSVMをoneパイプラインに組み合わせる方法はありますか?たとえば、TfidfVectorizerがあり、複数の分類子に対してテストして、それぞれが最適なモデル/パラメータを出力するようにします。
これは、任意の分類子と各分類子に対してパラメータの設定を最適化する簡単な方法です。
_from sklearn.base import BaseEstimator
class ClfSwitcher(BaseEstimator):
def __init__(
self,
estimator = SGDClassifier(),
):
"""
A Custom BaseEstimator that can switch between classifiers.
:param estimator: sklearn object - The classifier
"""
self.estimator = estimator
def fit(self, X, y=None, **kwargs):
self.estimator.fit(X, y)
return self
def predict(self, X, y=None):
return self.estimator.predict(X)
def predict_proba(self, X):
return self.estimator.predict_proba(X)
def score(self, X, y):
return self.estimator.score(X, y)
_
これで、推定パラメーターに何でも渡すことができます。また、次のように、渡した推定器のパラメータを最適化できます。
_from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.naive_bayes import MultinomialNB
from sklearn.linear_model import SGDClassifier
from sklearn.pipeline import Pipeline
from sklearn.model_selection import GridSearchCV
pipeline = Pipeline([
('tfidf', TfidfVectorizer()),
('clf', ClfSwitcher()),
])
parameters = [
{
'clf__estimator': [SGDClassifier()], # SVM if hinge loss / logreg if log loss
'tfidf__max_df': (0.25, 0.5, 0.75, 1.0),
'tfidf__stop_words': ['english', None],
'clf__estimator__penalty': ('l2', 'elasticnet', 'l1'),
'clf__estimator__max_iter': [50, 80],
'clf__estimator__tol': [1e-4],
'clf__estimator__loss': ['hinge', 'log', 'modified_huber'],
},
{
'clf__estimator': [MultinomialNB()],
'tfidf__max_df': (0.25, 0.5, 0.75, 1.0),
'tfidf__stop_words': [None],
'clf__estimator__alpha': (1e-2, 1e-3, 1e-1),
},
]
gscv = GridSearchCV(pipeline, parameters, cv=5, n_jobs=12, return_train_score=False, verbose=3)
gscv.fit(train_data, train_labels)
_
clf__estimator__loss
_の解釈方法_clf__estimator__loss
_は、loss
のestimator
パラメータとして解釈されます。ここで、一番上の例のestimator = SGDClassifier()
は、clf
オブジェクトであるClfSwitcher
のパラメータです。
はい、ラッパー関数を作成することでそれを行うことができます。アイデアは、2つのディクショナリを渡すことです。モデルとパラメータです。
次に、GridSearchCVを使用して、テストするすべてのパラメーターでモデルを繰り返し呼び出します。
この例を確認してください。追加の機能が追加されているため、最後に、さまざまなモデル/パラメーターとさまざまなパフォーマンススコアの概要を含むデータフレームを出力できます。
編集:ここに貼り付けるにはコードが多すぎます、ここで完全に機能する例を確認できます:
http://www.davidsbatista.net/blog/2018/02/23/model_optimization/