web-dev-qa-db-ja.com

パンダ:時間間隔によるローリング平均

私はPandasを初めて使用します。..ポーリングデータがたくさんあります。 3日間のウィンドウに基づいて毎日の推定値を取得するために、ローリング平均を計算します。 この質問 からわかるように、rolling_ *関数は、特定の日時範囲ではなく、指定された値の数に基づいてウィンドウを計算します。

この機能を実装する別の機能はありますか?それとも、自分で書くのにこだわっていますか?

編集:

サンプル入力データ:

polls_subset.tail(20)
Out[185]: 
            favorable  unfavorable  other

enddate                                  
2012-10-25       0.48         0.49   0.03
2012-10-25       0.51         0.48   0.02
2012-10-27       0.51         0.47   0.02
2012-10-26       0.56         0.40   0.04
2012-10-28       0.48         0.49   0.04
2012-10-28       0.46         0.46   0.09
2012-10-28       0.48         0.49   0.03
2012-10-28       0.49         0.48   0.03
2012-10-30       0.53         0.45   0.02
2012-11-01       0.49         0.49   0.03
2012-11-01       0.47         0.47   0.05
2012-11-01       0.51         0.45   0.04
2012-11-03       0.49         0.45   0.06
2012-11-04       0.53         0.39   0.00
2012-11-04       0.47         0.44   0.08
2012-11-04       0.49         0.48   0.03
2012-11-04       0.52         0.46   0.01
2012-11-04       0.50         0.47   0.03
2012-11-05       0.51         0.46   0.02
2012-11-07       0.51         0.41   0.00

出力には、各日付につき1行のみが含まれます。

EDIT x2:誤字を修正

66
Anov

その間に、タイムウィンドウ機能が追加されました。以下のリンクを参照してください。

https://github.com/pydata/pandas/pull/1351

In [1]: df = DataFrame({'B': range(5)})

In [2]: df.index = [Timestamp('20130101 09:00:00'),
   ...:             Timestamp('20130101 09:00:02'),
   ...:             Timestamp('20130101 09:00:03'),
   ...:             Timestamp('20130101 09:00:05'),
   ...:             Timestamp('20130101 09:00:06')]

In [3]: df
Out[3]: 
                     B
2013-01-01 09:00:00  0
2013-01-01 09:00:02  1
2013-01-01 09:00:03  2
2013-01-01 09:00:05  3
2013-01-01 09:00:06  4

In [4]: df.rolling(2, min_periods=1).sum()
Out[4]: 
                       B
2013-01-01 09:00:00  0.0
2013-01-01 09:00:02  1.0
2013-01-01 09:00:03  3.0
2013-01-01 09:00:05  5.0
2013-01-01 09:00:06  7.0

In [5]: df.rolling('2s', min_periods=1).sum()
Out[5]: 
                       B
2013-01-01 09:00:00  0.0
2013-01-01 09:00:02  1.0
2013-01-01 09:00:03  3.0
2013-01-01 09:00:05  3.0
2013-01-01 09:00:06  7.0
36
Martin

このようなものはどうですか:

最初にデータフレームを1D間隔にリサンプリングします。これは、重複するすべての日の値の平均を取ります。 fill_methodオプションを使用して、欠落している日付値を入力します。次に、リサンプリングされたフレームを、ウィンドウが3でmin_periods = 1のpd.rolling_meanに渡します。

pd.rolling_mean(df.resample("1D", fill_method="ffill"), window=3, min_periods=1)

            favorable  unfavorable     other
enddate
2012-10-25   0.495000     0.485000  0.025000
2012-10-26   0.527500     0.442500  0.032500
2012-10-27   0.521667     0.451667  0.028333
2012-10-28   0.515833     0.450000  0.035833
2012-10-29   0.488333     0.476667  0.038333
2012-10-30   0.495000     0.470000  0.038333
2012-10-31   0.512500     0.460000  0.029167
2012-11-01   0.516667     0.456667  0.026667
2012-11-02   0.503333     0.463333  0.033333
2012-11-03   0.490000     0.463333  0.046667
2012-11-04   0.494000     0.456000  0.043333
2012-11-05   0.500667     0.452667  0.036667
2012-11-06   0.507333     0.456000  0.023333
2012-11-07   0.510000     0.443333  0.013333

UPDATE:Benがコメントで指摘しているように、 with pandas 0.18.0構文が変更されました 。新しい構文では、これは次のようになります。

df.resample("1d").sum().fillna(0).rolling(window=3, min_periods=1).mean()
47
Zelazny7

私はちょうど同じ質問をしましたが、不規則な間隔のデータポイントがありました。ここでは、リサンプルは実際にはオプションではありません。そこで、独自の関数を作成しました。他の人にも役立つかもしれません:

from pandas import Series, DataFrame
import pandas as pd
from datetime import datetime, timedelta
import numpy as np

def rolling_mean(data, window, min_periods=1, center=False):
    ''' Function that computes a rolling mean

    Parameters
    ----------
    data : DataFrame or Series
           If a DataFrame is passed, the rolling_mean is computed for all columns.
    window : int or string
             If int is passed, window is the number of observations used for calculating 
             the statistic, as defined by the function pd.rolling_mean()
             If a string is passed, it must be a frequency string, e.g. '90S'. This is
             internally converted into a DateOffset object, representing the window size.
    min_periods : int
                  Minimum number of observations in window required to have a value.

    Returns
    -------
    Series or DataFrame, if more than one column    
    '''
    def f(x):
        '''Function to apply that actually computes the rolling mean'''
        if center == False:
            dslice = col[x-pd.datetools.to_offset(window).delta+timedelta(0,0,1):x]
                # adding a microsecond because when slicing with labels start and endpoint
                # are inclusive
        else:
            dslice = col[x-pd.datetools.to_offset(window).delta/2+timedelta(0,0,1):
                         x+pd.datetools.to_offset(window).delta/2]
        if dslice.size < min_periods:
            return np.nan
        else:
            return dslice.mean()

    data = DataFrame(data.copy())
    dfout = DataFrame()
    if isinstance(window, int):
        dfout = pd.rolling_mean(data, window, min_periods=min_periods, center=center)
    Elif isinstance(window, basestring):
        idx = Series(data.index.to_pydatetime(), index=data.index)
        for colname, col in data.iterkv():
            result = idx.apply(f)
            result.name = colname
            dfout = dfout.join(result, how='outer')
    if dfout.columns.size == 1:
        dfout = dfout.ix[:,0]
    return dfout


# Example
idx = [datetime(2011, 2, 7, 0, 0),
       datetime(2011, 2, 7, 0, 1),
       datetime(2011, 2, 7, 0, 1, 30),
       datetime(2011, 2, 7, 0, 2),
       datetime(2011, 2, 7, 0, 4),
       datetime(2011, 2, 7, 0, 5),
       datetime(2011, 2, 7, 0, 5, 10),
       datetime(2011, 2, 7, 0, 6),
       datetime(2011, 2, 7, 0, 8),
       datetime(2011, 2, 7, 0, 9)]
idx = pd.Index(idx)
vals = np.arange(len(idx)).astype(float)
s = Series(vals, index=idx)
rm = rolling_mean(s, window='2min')
33
user2689410

user2689410のコードはまさに私が必要としていたものでした。私のバージョン(user2689410のクレジット)を提供します。これは、DataFrameの行全体の平均を一度に計算するため、より高速です。

私の接尾辞規則が読めることを願っています:_s:文字列、_i:int、_b:bool、_ser:シリーズ、および_df:DataFrame。複数のサフィックスが見つかる場合、タイプは両方にすることができます。

import pandas as pd
from datetime import datetime, timedelta
import numpy as np

def time_offset_rolling_mean_df_ser(data_df_ser, window_i_s, min_periods_i=1, center_b=False):
    """ Function that computes a rolling mean

    Credit goes to user2689410 at http://stackoverflow.com/questions/15771472/pandas-rolling-mean-by-time-interval

    Parameters
    ----------
    data_df_ser : DataFrame or Series
         If a DataFrame is passed, the time_offset_rolling_mean_df_ser is computed for all columns.
    window_i_s : int or string
         If int is passed, window_i_s is the number of observations used for calculating
         the statistic, as defined by the function pd.time_offset_rolling_mean_df_ser()
         If a string is passed, it must be a frequency string, e.g. '90S'. This is
         internally converted into a DateOffset object, representing the window_i_s size.
    min_periods_i : int
         Minimum number of observations in window_i_s required to have a value.

    Returns
    -------
    Series or DataFrame, if more than one column

    >>> idx = [
    ...     datetime(2011, 2, 7, 0, 0),
    ...     datetime(2011, 2, 7, 0, 1),
    ...     datetime(2011, 2, 7, 0, 1, 30),
    ...     datetime(2011, 2, 7, 0, 2),
    ...     datetime(2011, 2, 7, 0, 4),
    ...     datetime(2011, 2, 7, 0, 5),
    ...     datetime(2011, 2, 7, 0, 5, 10),
    ...     datetime(2011, 2, 7, 0, 6),
    ...     datetime(2011, 2, 7, 0, 8),
    ...     datetime(2011, 2, 7, 0, 9)]
    >>> idx = pd.Index(idx)
    >>> vals = np.arange(len(idx)).astype(float)
    >>> ser = pd.Series(vals, index=idx)
    >>> df = pd.DataFrame({'s1':ser, 's2':ser+1})
    >>> time_offset_rolling_mean_df_ser(df, window_i_s='2min')
                          s1   s2
    2011-02-07 00:00:00  0.0  1.0
    2011-02-07 00:01:00  0.5  1.5
    2011-02-07 00:01:30  1.0  2.0
    2011-02-07 00:02:00  2.0  3.0
    2011-02-07 00:04:00  4.0  5.0
    2011-02-07 00:05:00  4.5  5.5
    2011-02-07 00:05:10  5.0  6.0
    2011-02-07 00:06:00  6.0  7.0
    2011-02-07 00:08:00  8.0  9.0
    2011-02-07 00:09:00  8.5  9.5
    """

    def calculate_mean_at_ts(ts):
        """Function (closure) to apply that actually computes the rolling mean"""
        if center_b == False:
            dslice_df_ser = data_df_ser[
                ts-pd.datetools.to_offset(window_i_s).delta+timedelta(0,0,1):
                ts
            ]
            # adding a microsecond because when slicing with labels start and endpoint
            # are inclusive
        else:
            dslice_df_ser = data_df_ser[
                ts-pd.datetools.to_offset(window_i_s).delta/2+timedelta(0,0,1):
                ts+pd.datetools.to_offset(window_i_s).delta/2
            ]
        if  (isinstance(dslice_df_ser, pd.DataFrame) and dslice_df_ser.shape[0] < min_periods_i) or \
            (isinstance(dslice_df_ser, pd.Series) and dslice_df_ser.size < min_periods_i):
            return dslice_df_ser.mean()*np.nan   # keeps number format and whether Series or DataFrame
        else:
            return dslice_df_ser.mean()

    if isinstance(window_i_s, int):
        mean_df_ser = pd.rolling_mean(data_df_ser, window=window_i_s, min_periods=min_periods_i, center=center_b)
    Elif isinstance(window_i_s, basestring):
        idx_ser = pd.Series(data_df_ser.index.to_pydatetime(), index=data_df_ser.index)
        mean_df_ser = idx_ser.apply(calculate_mean_at_ts)

    return mean_df_ser
7
Mark Horvath

この例は、@ andyhaydenのコメントで示唆されているように、加重平均を必要とするようです。たとえば、10/25に2回、10/26と10/27に1回の投票があります。リサンプリングして平均を取ると、10/25と10/26のポーリングに比べて10/26と10/27のポーリングに2倍の重みが効果的に与えられます。

dayに等しい重みではなく、各pollに等しい重みを与えるには、次のようなことができます。

>>> wt = df.resample('D',limit=5).count()

            favorable  unfavorable  other
enddate                                  
2012-10-25          2            2      2
2012-10-26          1            1      1
2012-10-27          1            1      1

>>> df2 = df.resample('D').mean()

            favorable  unfavorable  other
enddate                                  
2012-10-25      0.495        0.485  0.025
2012-10-26      0.560        0.400  0.040
2012-10-27      0.510        0.470  0.020

これにより、日ごとの平均ではなく、投票ごとの平均を行うための原料が得られます。前と同様に、投票は10/25で平均化されますが、10/25の重みも保存され、10/25または10/27の重みの2倍になり、10/25で2つの投票が行われたことを反映します。

>>> df3 = df2 * wt
>>> df3 = df3.rolling(3,min_periods=1).sum()
>>> wt3 = wt.rolling(3,min_periods=1).sum()

>>> df3 = df3 / wt3  

            favorable  unfavorable     other
enddate                                     
2012-10-25   0.495000     0.485000  0.025000
2012-10-26   0.516667     0.456667  0.030000
2012-10-27   0.515000     0.460000  0.027500
2012-10-28   0.496667     0.465000  0.041667
2012-10-29   0.484000     0.478000  0.042000
2012-10-30   0.488000     0.474000  0.042000
2012-10-31   0.530000     0.450000  0.020000
2012-11-01   0.500000     0.465000  0.035000
2012-11-02   0.490000     0.470000  0.040000
2012-11-03   0.490000     0.465000  0.045000
2012-11-04   0.500000     0.448333  0.035000
2012-11-05   0.501429     0.450000  0.032857
2012-11-06   0.503333     0.450000  0.028333
2012-11-07   0.510000     0.435000  0.010000

10/27のローリング平均は、52.1667(日加重)ではなく0.51500(ポーリング加重)になりました。

また、バージョン0.18.0からresampleおよびrollingのAPIに変更が加えられていることに注意してください。

ローリング(pandas 0.18.0の新機能)

resample(pandas 0.18.0の新機能)

3
JohnE

基本を保つために、ループと次のようなものを使用して開始しました(私のインデックスは日時です)。

import pandas as pd
import datetime as dt

#populate your dataframe: "df"
#...

df[df.index<(df.index[0]+dt.timedelta(hours=1))] #gives you a slice. you can then take .sum() .mean(), whatever

その後、そのスライスで関数を実行できます。イテレータを追加して、ウィンドウの開始をデータフレームインデックスの最初の値以外にすることで、ウィンドウがどのように回転するかを確認できます(たとえば、開始に>ルールを使用することもできます)。

これは、スライスがより激しくなる可能性があるため、非常に大きなデータまたは非常に小さな増分では効率が悪い場合があることに注意してください

3
Vlox

営業月のデルタがこのエラーをスローしたため、window = '1M'で試してみると、user2689410コードが壊れていることがわかりました。

AttributeError: 'MonthEnd' object has no attribute 'delta'

相対時間デルタを直接渡すオプションを追加したので、ユーザー定義の期間に対して同様のことができます。

ポインタのおかげで、ここに私の試みです-それが役に立つことを願っています。

def rolling_mean(data, window, min_periods=1, center=False):
""" Function that computes a rolling mean
Reference:
    http://stackoverflow.com/questions/15771472/pandas-rolling-mean-by-time-interval

Parameters
----------
data : DataFrame or Series
       If a DataFrame is passed, the rolling_mean is computed for all columns.
window : int, string, Timedelta or Relativedelta
         int - number of observations used for calculating the statistic,
               as defined by the function pd.rolling_mean()
         string - must be a frequency string, e.g. '90S'. This is
                  internally converted into a DateOffset object, and then
                  Timedelta representing the window size.
         Timedelta / Relativedelta - Can directly pass a timedeltas.
min_periods : int
              Minimum number of observations in window required to have a value.
center : bool
         Point around which to 'center' the slicing.

Returns
-------
Series or DataFrame, if more than one column
"""
def f(x, time_increment):
    """Function to apply that actually computes the rolling mean
    :param x:
    :return:
    """
    if not center:
        # adding a microsecond because when slicing with labels start
        # and endpoint are inclusive
        start_date = x - time_increment + timedelta(0, 0, 1)
        end_date = x
    else:
        start_date = x - time_increment/2 + timedelta(0, 0, 1)
        end_date = x + time_increment/2
    # Select the date index from the
    dslice = col[start_date:end_date]

    if dslice.size < min_periods:
        return np.nan
    else:
        return dslice.mean()

data = DataFrame(data.copy())
dfout = DataFrame()
if isinstance(window, int):
    dfout = pd.rolling_mean(data, window, min_periods=min_periods, center=center)

Elif isinstance(window, basestring):
    time_delta = pd.datetools.to_offset(window).delta
    idx = Series(data.index.to_pydatetime(), index=data.index)
    for colname, col in data.iteritems():
        result = idx.apply(lambda x: f(x, time_delta))
        result.name = colname
        dfout = dfout.join(result, how='outer')

Elif isinstance(window, (timedelta, relativedelta)):
    time_delta = window
    idx = Series(data.index.to_pydatetime(), index=data.index)
    for colname, col in data.iteritems():
        result = idx.apply(lambda x: f(x, time_delta))
        result.name = colname
        dfout = dfout.join(result, how='outer')

if dfout.columns.size == 1:
    dfout = dfout.ix[:, 0]
return dfout

そして、平均を計算するための3日間の時間枠の例:

from pandas import Series, DataFrame
import pandas as pd
from datetime import datetime, timedelta
import numpy as np
from dateutil.relativedelta import relativedelta

idx = [datetime(2011, 2, 7, 0, 0),
           datetime(2011, 2, 7, 0, 1),
           datetime(2011, 2, 8, 0, 1, 30),
           datetime(2011, 2, 9, 0, 2),
           datetime(2011, 2, 10, 0, 4),
           datetime(2011, 2, 11, 0, 5),
           datetime(2011, 2, 12, 0, 5, 10),
           datetime(2011, 2, 12, 0, 6),
           datetime(2011, 2, 13, 0, 8),
           datetime(2011, 2, 14, 0, 9)]
idx = pd.Index(idx)
vals = np.arange(len(idx)).astype(float)
s = Series(vals, index=idx)
# Now try by passing the 3 days as a relative time delta directly.
rm = rolling_mean(s, window=relativedelta(days=3))
>>> rm
Out[2]: 
2011-02-07 00:00:00    0.0
2011-02-07 00:01:00    0.5
2011-02-08 00:01:30    1.0
2011-02-09 00:02:00    1.5
2011-02-10 00:04:00    3.0
2011-02-11 00:05:00    4.0
2011-02-12 00:05:10    5.0
2011-02-12 00:06:00    5.5
2011-02-13 00:08:00    6.5
2011-02-14 00:09:00    7.5
Name: 0, dtype: float64
2
InterwebIsGreat

インデックスが本当にdatetimeではなくstrであることを確認してください。

data.index = pd.to_datetime(data['Index']).values
0
evgps