web-dev-qa-db-ja.com

リサンプリングエラー:メソッドまたは制限を使用して、一意でないインデックスのインデックスを再作成できません

Pandasを使用してデータを構造化および処理しています。

ここに、インデックス、ID、ビットレートとして日付を含むDataFrameがあります。データをIDでグループ化し、同時に、すべてのIDに関連する日付をリサンプリングして、最終的にビットレートスコアを維持したいと思います。

たとえば、与えられた:

df = pd.DataFrame(
{'Id' : ['CODI126640013.ts', 'CODI126622312.ts'],
'beginning_time':['2016-07-08 02:17:42', '2016-07-08 02:05:35'], 
'end_time' :['2016-07-08 02:17:55', '2016-07-08 02:26:11'],
'bitrate': ['3750000', '3750000'],
'type' : ['vod', 'catchup'],
'unique_id' : ['f2514f6b-ce7e-4e1a-8f6a-3ac5d524be30', 'f2514f6b-ce7e-4e1a-8f6a-3ac5d524bb22']})

これは:

enter image description here

これは、IDとビットレートのたびに日付の一意の列を取得するための私のコードです:

df = df.drop(['type', 'unique_id'], axis=1)
df.beginning_time = pd.to_datetime(df.beginning_time)
df.end_time = pd.to_datetime(df.end_time)
df = pd.melt(df, id_vars=['Id','bitrate'], value_name='dates').drop('variable', axis=1)
df.set_index('dates', inplace=True)

これは:

enter image description here

そして今、リサンプルの時間です!これは私のコードです:

print (df.groupby('Id').resample('1S').ffill())

そしてこれが結果です:

enter image description here

これがまさに私がやりたいことです!同じ列のログが38279あり、同じことをするとエラーメッセージが表示されます。最初の部分は完全に機能し、これを提供します:

enter image description here

部分(df.groupby( 'Id')。resample( '1S')。ffill())はこのエラーメッセージを表示します:

ValueError: cannot reindex a non-unique index with a method or limit

何か案は ? Thnx!

8
Arij SEDIRI

列の重複に問題があるようですbeginning_timeおよびend_time、私はそれをシミュレートしてみます:

df = pd.DataFrame(
{'Id' : ['CODI126640013.ts', 'CODI126622312.ts', 'a'],
'beginning_time':['2016-07-08 02:17:42', '2016-07-08 02:17:42', '2016-07-08 02:17:45'], 
'end_time' :['2016-07-08 02:17:42', '2016-07-08 02:17:42', '2016-07-08 02:17:42'],
'bitrate': ['3750000', '3750000', '444'],
'type' : ['vod', 'catchup', 's'],
'unique_id':['f2514f6b-ce7e-4e1a-8f6a-3ac5d524be30', 'f2514f6b-ce7e-4e1a-8f6a-3ac5d524bb22','w']})

print (df)  
                 Id       beginning_time  bitrate             end_time  \
0  CODI126640013.ts  2016-07-08 02:17:42  3750000  2016-07-08 02:17:42   
1  CODI126622312.ts  2016-07-08 02:17:42  3750000  2016-07-08 02:17:42   
2                 a  2016-07-08 02:17:45      444  2016-07-08 02:17:42   

      type                             unique_id  
0      vod  f2514f6b-ce7e-4e1a-8f6a-3ac5d524be30  
1  catchup  f2514f6b-ce7e-4e1a-8f6a-3ac5d524bb22  
2        s                                     w  
df = df.drop(['type', 'unique_id'], axis=1)
df.beginning_time = pd.to_datetime(df.beginning_time)
df.end_time = pd.to_datetime(df.end_time)
df = pd.melt(df, id_vars=['Id','bitrate'], value_name='dates').drop('variable', axis=1)
df.set_index('dates', inplace=True)


print (df)  
                                   Id  bitrate
dates                                         
2016-07-08 02:17:42  CODI126640013.ts  3750000
2016-07-08 02:17:42  CODI126622312.ts  3750000
2016-07-08 02:17:45                 a      444
2016-07-08 02:17:42  CODI126640013.ts  3750000
2016-07-08 02:17:42  CODI126622312.ts  3750000
2016-07-08 02:17:42                 a      444

print (df.groupby('Id').resample('1S').ffill())

ValueError:メソッドまたは制限を使用して一意でないインデックスのインデックスを再作成することはできません

考えられる解決策の1つは、追加です drop_duplicates そして古い wayresamplegroupbyに使用します:

df = df.drop(['type', 'unique_id'], axis=1)
df.beginning_time = pd.to_datetime(df.beginning_time)
df.end_time = pd.to_datetime(df.end_time)
df = pd.melt(df, id_vars=['Id','bitrate'], value_name='dates').drop('variable', axis=1)

print (df.groupby('Id').apply(lambda x : x.drop_duplicates('dates')
                                          .set_index('dates')
                                          .resample('1S')
                                          .ffill()))

                                                    Id  bitrate
Id               dates                                         
CODI126622312.ts 2016-07-08 02:17:42  CODI126622312.ts  3750000
CODI126640013.ts 2016-07-08 02:17:42  CODI126640013.ts  3750000
a                2016-07-08 02:17:41                 a      444
                 2016-07-08 02:17:42                 a      444
                 2016-07-08 02:17:43                 a      444
                 2016-07-08 02:17:44                 a      444
                 2016-07-08 02:17:45                 a      444

boolean indexing

print (df[df.beginning_time == df.end_time])
2        s                                     w  
                 Id       beginning_time  bitrate             end_time  \
0  CODI126640013.ts  2016-07-08 02:17:42  3750000  2016-07-08 02:17:42   
1  CODI126622312.ts  2016-07-08 02:17:42  3750000  2016-07-08 02:17:42   

      type                             unique_id  
0      vod  f2514f6b-ce7e-4e1a-8f6a-3ac5d524be30  
1  catchup  f2514f6b-ce7e-4e1a-8f6a-3ac5d524bb22  
10
jezrael