列の長さに関連する条件を使用してDataFrame
をフィルタリングしたいのですが、この質問は非常に簡単かもしれませんが、SOには関連する質問が見つかりませんでした。
より具体的には、DataFrame
が1つだけのColumn
があり、ArrayType(StringType())
のどれか、長さをフィルターとして使用してDataFrame
をフィルターしたい以下のスニペット。
df = sqlContext.read.parquet("letters.parquet")
df.show()
# The output will be
# +------------+
# | tokens|
# +------------+
# |[L, S, Y, S]|
# |[L, V, I, S]|
# |[I, A, N, A]|
# |[I, L, S, A]|
# |[E, N, N, Y]|
# |[E, I, M, A]|
# |[O, A, N, A]|
# | [S, U, S]|
# +------------+
# But I want only the entries with length 3 or less
fdf = df.filter(len(df.tokens) <= 3)
fdf.show() # But it says that the TypeError: object of type 'Column' has no len(), so the previous statement is obviously incorrect.
コラムのドキュメント を読みましたが、この問題に役立つプロパティは見つかりませんでした。助けてくれてありがとう!
Spark> = 1.5では、 size
関数を使用できます。
from pyspark.sql.functions import col, size
df = sqlContext.createDataFrame([
(["L", "S", "Y", "S"], ),
(["L", "V", "I", "S"], ),
(["I", "A", "N", "A"], ),
(["I", "L", "S", "A"], ),
(["E", "N", "N", "Y"], ),
(["E", "I", "M", "A"], ),
(["O", "A", "N", "A"], ),
(["S", "U", "S"], )],
("tokens", ))
df.where(size(col("tokens")) <= 3).show()
## +---------+
## | tokens|
## +---------+
## |[S, U, S]|
## +---------+
Spark <1.5では、UDFがトリックを行う必要があります。
from pyspark.sql.types import IntegerType
from pyspark.sql.functions import udf
size_ = udf(lambda xs: len(xs), IntegerType())
df.where(size_(col("tokens")) <= 3).show()
## +---------+
## | tokens|
## +---------+
## |[S, U, S]|
## +---------+
HiveContext
を使用する場合、size
UDFは生のSQLでどのバージョンでも動作するはずです。
df.registerTempTable("df")
sqlContext.sql("SELECT * FROM df WHERE size(tokens) <= 3").show()
## +--------------------+
## | tokens|
## +--------------------+
## |ArrayBuffer(S, U, S)|
## +--------------------+
文字列列の場合は、上記で定義したudf
またはlength
関数を使用できます。
from pyspark.sql.functions import length
df = sqlContext.createDataFrame([("fooo", ), ("bar", )], ("k", ))
df.where(length(col("k")) <= 3).show()
## +---+
## | k|
## +---+
## |bar|
## +---+
ScalaのStringの例を次に示します。
val stringData = Seq(("Maheswara"), ("Mokshith"))
val df = sc.parallelize(stringData).toDF
df.where((length($"value")) <= 8).show
+--------+
| value|
+--------+
|Mokshith|
+--------+
df.withColumn("length", length($"value")).show
+---------+------+
| value|length|
+---------+------+
|Maheswara| 9|
| Mokshith| 8|
+---------+------+
@AlbertoBonsanto:配列サイズに基づいて以下のコードフィルター:
val input = Seq(("a1,a2,a3,a4,a5"), ("a1,a2,a3,a4"), ("a1,a2,a3"), ("a1,a2"), ("a1"))
val df = sc.parallelize(input).toDF("tokens")
val tokensArrayDf = df.withColumn("tokens", split($"tokens", ","))
tokensArrayDf.show
+--------------------+
| tokens|
+--------------------+
|[a1, a2, a3, a4, a5]|
| [a1, a2, a3, a4]|
| [a1, a2, a3]|
| [a1, a2]|
| [a1]|
+--------------------+
tokensArrayDf.filter(size($"tokens") > 3).show
+--------------------+
| tokens|
+--------------------+
|[a1, a2, a3, a4, a5]|
| [a1, a2, a3, a4]|
+--------------------+