web-dev-qa-db-ja.com

数独を解くアルゴリズム

私はpythonで数独パズルを解くためのコードを書きたいと思っています。皆さんはこの目的のための優れたアルゴリズムについて何か考えを持っています。私はネットでどこかで満たすことによってそれを解決するアルゴリズムについて読みます可能なすべての数字を含むボックス全体、次に対応するボックスに既知の値を挿入します。既知の値の行と列から既知の値が削除されます。これよりも優れたアルゴリズムを知っている場合は、それを書いてください。また、私はユーザーから既知の値をどのように読み取るべきか混乱しました。コンソールから値を1つずつ入力するのは本当に難しいです。guiを使用する以外の簡単な方法はありますか?

12
Rag Sagar

これが私の数独ソルバーです。パズルを解くために単純なバックトラッキングアルゴリズムを使用します。簡単にするために、入力の検証や空想的な出力は行われません。問題を解決するのは最小限のコードです。

アルゴリズム

  1. 特定のセルのすべての正当な値を検索します
  2. 各正当な値について、再帰的に行き、グリッドを解決してみてください

解決

それは部分的に数字で満たされた9X9グリッドを取ります。値が0のセルは、塗りつぶされていないことを示します。

コード

def findNextCellToFill(grid, i, j):
        for x in range(i,9):
                for y in range(j,9):
                        if grid[x][y] == 0:
                                return x,y
        for x in range(0,9):
                for y in range(0,9):
                        if grid[x][y] == 0:
                                return x,y
        return -1,-1

def isValid(grid, i, j, e):
        rowOk = all([e != grid[i][x] for x in range(9)])
        if rowOk:
                columnOk = all([e != grid[x][j] for x in range(9)])
                if columnOk:
                        # finding the top left x,y co-ordinates of the section containing the i,j cell
                        secTopX, secTopY = 3 *(i//3), 3 *(j//3) #floored quotient should be used here. 
                        for x in range(secTopX, secTopX+3):
                                for y in range(secTopY, secTopY+3):
                                        if grid[x][y] == e:
                                                return False
                        return True
        return False

def solveSudoku(grid, i=0, j=0):
        i,j = findNextCellToFill(grid, i, j)
        if i == -1:
                return True
        for e in range(1,10):
                if isValid(grid,i,j,e):
                        grid[i][j] = e
                        if solveSudoku(grid, i, j):
                                return True
                        # Undo the current cell for backtracking
                        grid[i][j] = 0
        return False

コードをテストする


>>> input = [[5,1,7,6,0,0,0,3,4],[2,8,9,0,0,4,0,0,0],[3,4,6,2,0,5,0,9,0],[6,0,2,0,0,0,0,1,0],[0,3,8,0,0,6,0,4,7],[0,0,0,0,0,0,0,0,0],[0,9,0,0,0,0,0,7,8],[7,0,3,4,0,0,5,6,0],[0,0,0,0,0,0,0,0,0]]
>>> solveSudoku(input)
True
>>> input
[[5, 1, 7, 6, 9, 8, 2, 3, 4], [2, 8, 9, 1, 3, 4, 7, 5, 6], [3, 4, 6, 2, 7, 5, 8, 9, 1], [6, 7, 2, 8, 4, 9, 3, 1, 5], [1, 3, 8, 5, 2, 6, 9, 4, 7], [9, 5, 4, 7, 1, 3, 6, 8, 2], [4, 9, 5, 3, 6, 2, 1, 7, 8], [7, 2, 3, 4, 8, 1, 5, 6, 9], [8, 6, 1, 9, 5, 7, 4, 2, 3]]

上記は非常に基本的なバックトラッキングアルゴリズムで、多くの場所で説明されています。しかし、私が遭遇した数独の解法の最も興味深く、自然なものは これ から ここ です

23
hari

Pythonで数独ソルバーも作成しました。これもバックトラッキングアルゴリズムですが、実装も共有したいと思いました。

制約内で移動し、セルを賢く選択している場合、バックトラックは十分に高速です。また、チェックアウトすることもできます アルゴリズムの最適化に関するこのスレッドでの私の回答 。しかし、ここではアルゴリズムとコード自体に焦点を当てます。

アルゴリズムの要点は、グリッドの反復を開始し、何をすべきかを決定することです。セルにデータを入力するか、同じセルに別の数字を試すか、セルを空白にして前のセルに戻るなどです。注意することが重要です。パズルを解くために必要なステップ数または反復数を知るための確定的な方法はないこと。したがって、whileループを使用するか、再帰を使用するかの2つのオプションがあります。どちらも、解が見つかるまで、または解の欠如が証明されるまで反復を続けることができます。再帰の利点は、分岐が可能であり、一般的にはより複雑なロジックとアルゴリズムをサポートできることですが、欠点は、実装が難しく、デバッグが難しい場合があることです。私のバックトラッキングの実装では、分岐が必要ないため、whileループを使用しました。アルゴリズムは、シングルスレッドの線形方式で検索します。

ロジックは次のようになります。

真の間:(主な反復)

  1. すべての空白セルが反復され、最後に反復された空白セルに試行する残りの桁がない場合-解決策がないため、ここで停止します。
  2. 空白のセルがない場合は、グリッドを検証します。グリッドが有効な場合は、ここで停止してソリューションを返します。
  3. 空白のセルがある場合は、次のセルを選択します。そのセルに少なくとも可能な桁がある場合は、それを割り当てて、次のメインの反復に進みます。
  4. 現在のセルに少なくとも1つの残りの選択肢があり、空白のセルがないか、すべての空白のセルが反復されている場合は、残りの選択肢を割り当てて、次のメインの繰り返しに進みます。
  5. 上記のいずれにも該当しない場合は、バックトラックする時期です。現在のセルを空白にし、以下のループに入ります。

真の間:(バックトラック反復)

  1. バックトラックするセルがもうない場合-解決策がないため、ここで停止します。
  2. バックトラック履歴に従って前のセルを選択します。
  3. セルに選択肢が残っていない場合は、セルを空白にして、次のバックトラックの繰り返しに進みます。
  4. 次の利用可能な数字を現在のセルに割り当て、バックトラックから抜け出し、メインの反復に戻ります。

アルゴリズムのいくつかの機能:

  • 訪問したセルの記録を同じ順序で保持するため、いつでもバックトラックできます

  • 同じセルの同じ数字を2回試行しないように、各セルの選択肢の記録を保持します

  • セルで使用可能な選択肢は常に数独の制約(行、列、3x3象限)内にあります

  • この特定の実装には、入力パラメーターに応じて次のセルと次の数字を選択するいくつかの異なる方法があります( 最適化スレッドの詳細

  • 空白のグリッドを指定すると、有効な数独パズルが生成されます(毎回ランダムグリッドを生成するには、最適化パラメーター "C"を使用します)。

  • 解決されたグリッドが与えられると、それはそれを認識してメッセージを出力します

完全なコードは次のとおりです。

import random, math, time

class Sudoku:
    def __init__( self, _g=[] ):
        self._input_grid = [] # store a copy of the original input grid for later use
        self.grid = [] # this is the main grid that will be iterated
        for i in _g: # copy the nested lists by value, otherwise Python keeps the reference for the nested lists
            self._input_grid.append( i[:] )
            self.grid.append( i[:] )

    self.empty_cells = set() # set of all currently empty cells (by index number from left to right, top to bottom)
    self.empty_cells_initial = set() # this will be used to compare against the current set of empty cells in order to determine if all cells have been iterated
    self.current_cell = None # used for iterating
    self.current_choice = 0 # used for iterating
    self.history = [] # list of visited cells for backtracking
    self.choices = {} # dictionary of sets of currently available digits for each cell
    self.nextCellWeights = {} # a dictionary that contains weights for all cells, used when making a choice of next cell
    self.nextCellWeights_1 = lambda x: None # the first function that will be called to assign weights
    self.nextCellWeights_2 = lambda x: None # the second function that will be called to assign weights
    self.nextChoiceWeights = {} # a dictionary that contains weights for all choices, used when selecting the next choice
    self.nextChoiceWeights_1 = lambda x: None # the first function that will be called to assign weights
    self.nextChoiceWeights_2 = lambda x: None # the second function that will be called to assign weights

    self.search_space = 1 # the number of possible combinations among the empty cells only, for information purpose only
    self.iterations = 0 # number of main iterations, for information purpose only
    self.iterations_backtrack = 0 # number of backtrack iterations, for information purpose only

    self.digit_heuristic = { 1:0, 2:0, 3:0, 4:0, 5:0, 6:0, 7:0, 8:0, 9:0 } # store the number of times each digit is used in order to choose the ones that are least/most used, parameter "3" and "4"
    self.centerWeights = {} # a dictionary of the distances for each cell from the center of the grid, calculated only once at the beginning

    # populate centerWeights by using Pythagorean theorem
    for id in range( 81 ):
        row = id // 9
        col = id % 9
        self.centerWeights[ id ] = int( round( 100 * math.sqrt( (row-4)**2 + (col-4)**2 ) ) )



    # for debugging purposes
    def dump( self, _custom_text, _file_object ):
        _custom_text += ", cell: {}, choice: {}, choices: {}, empty: {}, history: {}, grid: {}\n".format(
            self.current_cell, self.current_choice, self.choices, self.empty_cells, self.history, self.grid )
        _file_object.write( _custom_text )

    # to be called before each solve of the grid
    def reset( self ):
        self.grid = []
        for i in self._input_grid:
            self.grid.append( i[:] )

        self.empty_cells = set()
        self.empty_cells_initial = set()
        self.current_cell = None
        self.current_choice = 0
        self.history = []
        self.choices = {}

        self.nextCellWeights = {}
        self.nextCellWeights_1 = lambda x: None
        self.nextCellWeights_2 = lambda x: None
        self.nextChoiceWeights = {}
        self.nextChoiceWeights_1 = lambda x: None
        self.nextChoiceWeights_2 = lambda x: None

        self.search_space = 1
        self.iterations = 0
        self.iterations_backtrack = 0

        self.digit_heuristic = { 1:0, 2:0, 3:0, 4:0, 5:0, 6:0, 7:0, 8:0, 9:0 }

    def validate( self ):
        # validate all rows
        for x in range(9):
            digit_count = { 0:1, 1:0, 2:0, 3:0, 4:0, 5:0, 6:0, 7:0, 8:0, 9:0 }
            for y in range(9):
                digit_count[ self.grid[ x ][ y ] ] += 1
            for i in digit_count:
                if digit_count[ i ] != 1:
                    return False

        # validate all columns
        for x in range(9):
            digit_count = { 0:1, 1:0, 2:0, 3:0, 4:0, 5:0, 6:0, 7:0, 8:0, 9:0 }
            for y in range(9):
                digit_count[ self.grid[ y ][ x ] ] += 1
            for i in digit_count:
                if digit_count[ i ] != 1:
                    return False

        # validate all 3x3 quadrants
        def validate_quadrant( _grid, from_row, to_row, from_col, to_col ):
            digit_count = { 0:1, 1:0, 2:0, 3:0, 4:0, 5:0, 6:0, 7:0, 8:0, 9:0 }
            for x in range( from_row, to_row + 1 ):
                for y in range( from_col, to_col + 1 ):
                    digit_count[ _grid[ x ][ y ] ] += 1
            for i in digit_count:
                if digit_count[ i ] != 1:
                    return False
            return True

        for x in range( 0, 7, 3 ):
            for y in range( 0, 7, 3 ):
                if not validate_quadrant( self.grid, x, x+2, y, y+2 ):
                    return False
        return True

    def setCell( self, _id, _value ):
        row = _id // 9
        col = _id % 9
        self.grid[ row ][ col ] = _value

    def getCell( self, _id ):
        row = _id // 9
        col = _id % 9
        return self.grid[ row ][ col ]

    # returns a set of IDs of all blank cells that are related to the given one, related means from the same row, column or quadrant
    def getRelatedBlankCells( self, _id ):
        result = set()
        row = _id // 9
        col = _id % 9

        for i in range( 9 ):
            if self.grid[ row ][ i ] == 0: result.add( row * 9 + i )
        for i in range( 9 ):
            if self.grid[ i ][ col ] == 0: result.add( i * 9 + col )
        for x in range( (row//3)*3, (row//3)*3 + 3 ):
            for y in range( (col//3)*3, (col//3)*3 + 3 ):
                if self.grid[ x ][ y ] == 0: result.add( x * 9 + y )

        return set( result ) # return by value

    # get the next cell to iterate
    def getNextCell( self ):
        self.nextCellWeights = {}
        for id in self.empty_cells:
            self.nextCellWeights[ id ] = 0

        self.nextCellWeights_1( 1000 ) # these two functions will always be called, but behind them will be a different weight function depending on the optimization parameters provided
        self.nextCellWeights_2( 1 )

        return min( self.nextCellWeights, key = self.nextCellWeights.get )

    def nextCellWeights_A( self, _factor ): # the first cell from left to right, from top to bottom
        for id in self.nextCellWeights:
            self.nextCellWeights[ id ] += id * _factor

    def nextCellWeights_B( self, _factor ): # the first cell from right to left, from bottom to top
        self.nextCellWeights_A( _factor * -1 )

    def nextCellWeights_C( self, _factor ): # a randomly chosen cell
        for id in self.nextCellWeights:
            self.nextCellWeights[ id ] += random.randint( 0, 999 ) * _factor

    def nextCellWeights_D( self, _factor ): # the closest cell to the center of the grid
        for id in self.nextCellWeights:
            self.nextCellWeights[ id ] += self.centerWeights[ id ] * _factor

    def nextCellWeights_E( self, _factor ): # the cell that currently has the fewest choices available
        for id in self.nextCellWeights:
            self.nextCellWeights[ id ] += len( self.getChoices( id ) ) * _factor

    def nextCellWeights_F( self, _factor ): # the cell that currently has the most choices available
        self.nextCellWeights_E( _factor * -1 )

    def nextCellWeights_G( self, _factor ): # the cell that has the fewest blank related cells
        for id in self.nextCellWeights:
            self.nextCellWeights[ id ] += len( self.getRelatedBlankCells( id ) ) * _factor

    def nextCellWeights_H( self, _factor ): # the cell that has the most blank related cells
        self.nextCellWeights_G( _factor * -1 )

    def nextCellWeights_I( self, _factor ): # the cell that is closest to all filled cells
        for id in self.nextCellWeights:
            weight = 0
            for check in range( 81 ):
                if self.getCell( check ) != 0:
                    weight += math.sqrt( ( id//9 - check//9 )**2 + ( id%9 - check%9 )**2 )

    def nextCellWeights_J( self, _factor ): # the cell that is furthest from all filled cells
        self.nextCellWeights_I( _factor * -1 )

    def nextCellWeights_K( self, _factor ): # the cell whose related blank cells have the fewest available choices
        for id in self.nextCellWeights:
            weight = 0
            for id_blank in self.getRelatedBlankCells( id ):
                weight += len( self.getChoices( id_blank ) )
            self.nextCellWeights[ id ] += weight * _factor

    def nextCellWeights_L( self, _factor ): # the cell whose related blank cells have the most available choices
        self.nextCellWeights_K( _factor * -1 )



    # for a given cell return a set of possible digits within the Sudoku restrictions
    def getChoices( self, _id ):
        available_choices = {1,2,3,4,5,6,7,8,9}
        row = _id // 9
        col = _id % 9

        # exclude digits from the same row
        for y in range( 0, 9 ):
            if self.grid[ row ][ y ] in available_choices:
                available_choices.remove( self.grid[ row ][ y ] )

        # exclude digits from the same column
        for x in range( 0, 9 ):
            if self.grid[ x ][ col ] in available_choices:
                available_choices.remove( self.grid[ x ][ col ] )

        # exclude digits from the same quadrant
        for x in range( (row//3)*3, (row//3)*3 + 3 ):
            for y in range( (col//3)*3, (col//3)*3 + 3 ):
                if self.grid[ x ][ y ] in available_choices:
                    available_choices.remove( self.grid[ x ][ y ] )

        if len( available_choices ) == 0: return set()
        else: return set( available_choices ) # return by value

    def nextChoice( self ):
        self.nextChoiceWeights = {}
        for i in self.choices[ self.current_cell ]:
            self.nextChoiceWeights[ i ] = 0

        self.nextChoiceWeights_1( 1000 )
        self.nextChoiceWeights_2( 1 )

        self.current_choice = min( self.nextChoiceWeights, key = self.nextChoiceWeights.get )
        self.setCell( self.current_cell, self.current_choice )
        self.choices[ self.current_cell ].remove( self.current_choice )

    def nextChoiceWeights_0( self, _factor ): # the lowest digit
        for i in self.nextChoiceWeights:
            self.nextChoiceWeights[ i ] += i * _factor

    def nextChoiceWeights_1( self, _factor ): # the highest digit
        self.nextChoiceWeights_0( _factor * -1 )

    def nextChoiceWeights_2( self, _factor ): # a randomly chosen digit
        for i in self.nextChoiceWeights:
            self.nextChoiceWeights[ i ] += random.randint( 0, 999 ) * _factor

    def nextChoiceWeights_3( self, _factor ): # heuristically, the least used digit across the board
        self.digit_heuristic = { 1:0, 2:0, 3:0, 4:0, 5:0, 6:0, 7:0, 8:0, 9:0 }
        for id in range( 81 ):
            if self.getCell( id ) != 0: self.digit_heuristic[ self.getCell( id ) ] += 1
        for i in self.nextChoiceWeights:
            self.nextChoiceWeights[ i ] += self.digit_heuristic[ i ] * _factor

    def nextChoiceWeights_4( self, _factor ): # heuristically, the most used digit across the board
        self.nextChoiceWeights_3( _factor * -1 )

    def nextChoiceWeights_5( self, _factor ): # the digit that will cause related blank cells to have the least number of choices available
        cell_choices = {}
        for id in self.getRelatedBlankCells( self.current_cell ):
            cell_choices[ id ] = self.getChoices( id )

        for c in self.nextChoiceWeights:
            weight = 0
            for id in cell_choices:
                weight += len( cell_choices[ id ] )
                if c in cell_choices[ id ]: weight -= 1
            self.nextChoiceWeights[ c ] += weight * _factor

    def nextChoiceWeights_6( self, _factor ): # the digit that will cause related blank cells to have the most number of choices available
        self.nextChoiceWeights_5( _factor * -1 )

    def nextChoiceWeights_7( self, _factor ): # the digit that is the least common available choice among related blank cells
        cell_choices = {}
        for id in self.getRelatedBlankCells( self.current_cell ):
            cell_choices[ id ] = self.getChoices( id )

        for c in self.nextChoiceWeights:
            weight = 0
            for id in cell_choices:
                if c in cell_choices[ id ]: weight += 1
            self.nextChoiceWeights[ c ] += weight * _factor

    def nextChoiceWeights_8( self, _factor ): # the digit that is the most common available choice among related blank cells
        self.nextChoiceWeights_7( _factor * -1 )

    def nextChoiceWeights_9( self, _factor ): # the digit that is the least common available choice across the board
        cell_choices = {}
        for id in range( 81 ):
            if self.getCell( id ) == 0:
                cell_choices[ id ] = self.getChoices( id )

        for c in self.nextChoiceWeights:
            weight = 0
            for id in cell_choices:
                if c in cell_choices[ id ]: weight += 1
            self.nextChoiceWeights[ c ] += weight * _factor

    def nextChoiceWeights_a( self, _factor ): # the digit that is the most common available choice across the board
        self.nextChoiceWeights_9( _factor * -1 )



    # the main function to be called
    def solve( self, _nextCellMethod, _nextChoiceMethod, _start_time, _prefillSingleChoiceCells = False ):
        s = self
        s.reset()

        # initialize optimization functions based on the optimization parameters provided
        """
        A - the first cell from left to right, from top to bottom
        B - the first cell from right to left, from bottom to top
        C - a randomly chosen cell
        D - the closest cell to the center of the grid
        E - the cell that currently has the fewest choices available
        F - the cell that currently has the most choices available
        G - the cell that has the fewest blank related cells
        H - the cell that has the most blank related cells
        I - the cell that is closest to all filled cells
        J - the cell that is furthest from all filled cells
        K - the cell whose related blank cells have the fewest available choices
        L - the cell whose related blank cells have the most available choices
        """
        if _nextCellMethod[ 0 ] in "ABCDEFGHIJKLMN":
            s.nextCellWeights_1 = getattr( s, "nextCellWeights_" + _nextCellMethod[0] )
        Elif _nextCellMethod[ 0 ] == " ":
            s.nextCellWeights_1 = lambda x: None
        else:
            print( "(A) Incorrect optimization parameters provided" )
            return False

        if len( _nextCellMethod ) > 1:
            if _nextCellMethod[ 1 ] in "ABCDEFGHIJKLMN":
                s.nextCellWeights_2 = getattr( s, "nextCellWeights_" + _nextCellMethod[1] )
            Elif _nextCellMethod[ 1 ] == " ":
                s.nextCellWeights_2 = lambda x: None
            else:
                print( "(B) Incorrect optimization parameters provided" )
                return False
        else:
            s.nextCellWeights_2 = lambda x: None

        # initialize optimization functions based on the optimization parameters provided
        """
        0 - the lowest digit
        1 - the highest digit
        2 - a randomly chosen digit
        3 - heuristically, the least used digit across the board
        4 - heuristically, the most used digit across the board
        5 - the digit that will cause related blank cells to have the least number of choices available
        6 - the digit that will cause related blank cells to have the most number of choices available
        7 - the digit that is the least common available choice among related blank cells
        8 - the digit that is the most common available choice among related blank cells
        9 - the digit that is the least common available choice across the board
        a - the digit that is the most common available choice across the board
        """
        if _nextChoiceMethod[ 0 ] in "0123456789a":
            s.nextChoiceWeights_1 = getattr( s, "nextChoiceWeights_" + _nextChoiceMethod[0] )
        Elif _nextChoiceMethod[ 0 ] == " ":
            s.nextChoiceWeights_1 = lambda x: None
        else:
            print( "(C) Incorrect optimization parameters provided" )
            return False

        if len( _nextChoiceMethod ) > 1:
            if _nextChoiceMethod[ 1 ] in "0123456789a":
                s.nextChoiceWeights_2 = getattr( s, "nextChoiceWeights_" + _nextChoiceMethod[1] )
            Elif _nextChoiceMethod[ 1 ] == " ":
                s.nextChoiceWeights_2 = lambda x: None
            else:
                print( "(D) Incorrect optimization parameters provided" )
                return False
        else:
            s.nextChoiceWeights_2 = lambda x: None

        # fill in all cells that have single choices only, and keep doing it until there are no left, because as soon as one cell is filled this might bring the choices down to 1 for another cell
        if _prefillSingleChoiceCells == True:
            while True:
                next = False
                for id in range( 81 ):
                    if s.getCell( id ) == 0:
                        cell_choices = s.getChoices( id )
                        if len( cell_choices ) == 1:
                            c = cell_choices.pop()
                            s.setCell( id, c )
                            next = True
                if not next: break

        # initialize set of empty cells
        for x in range( 0, 9, 1 ):
            for y in range( 0, 9, 1 ):
                if s.grid[ x ][ y ] == 0:
                    s.empty_cells.add( 9*x + y )
        s.empty_cells_initial = set( s.empty_cells ) # copy by value

        # calculate search space
        for id in s.empty_cells:
            s.search_space *= len( s.getChoices( id ) )

        # initialize the iteration by choosing a first cell
        if len( s.empty_cells ) < 1:
            if s.validate():
                print( "Sudoku provided is valid!" )
                return True
            else:
                print( "Sudoku provided is not valid!" )
                return False
        else: s.current_cell = s.getNextCell()

        s.choices[ s.current_cell ] = s.getChoices( s.current_cell )
        if len( s.choices[ s.current_cell ] ) < 1:
            print( "(C) Sudoku cannot be solved!" )
            return False



        # start iterating the grid
        while True:
            #if time.time() - _start_time > 2.5: return False # used when doing mass tests and don't want to wait hours for an inefficient optimization to complete

            s.iterations += 1

            # if all empty cells and all possible digits have been exhausted, then the Sudoku cannot be solved
            if s.empty_cells == s.empty_cells_initial and len( s.choices[ s.current_cell ] ) < 1:
                print( "(A) Sudoku cannot be solved!" )
                return False

            # if there are no empty cells, it's time to validate the Sudoku
            if len( s.empty_cells ) < 1:
                if s.validate():
                    print( "Sudoku has been solved! " )
                    print( "search space is {}".format( self.search_space ) )
                    print( "empty cells: {}, iterations: {}, backtrack iterations: {}".format( len( self.empty_cells_initial ), self.iterations, self.iterations_backtrack ) )
                    for i in range(9):
                        print( self.grid[i] )
                    return True

            # if there are empty cells, then move to the next one
            if len( s.empty_cells ) > 0:

                s.current_cell = s.getNextCell() # get the next cell
                s.history.append( s.current_cell ) # add the cell to history
                s.empty_cells.remove( s.current_cell ) # remove the cell from the empty queue
                s.choices[ s.current_cell ] = s.getChoices( s.current_cell ) # get possible choices for the chosen cell

                if len( s.choices[ s.current_cell ] ) > 0: # if there is at least one available digit, then choose it and move to the next iteration, otherwise the iteration continues below with a backtrack
                    s.nextChoice()
                    continue

            # if all empty cells have been iterated or there are no empty cells, and there are still some remaining choices, then try another choice
            if len( s.choices[ s.current_cell ] ) > 0 and ( s.empty_cells == s.empty_cells_initial or len( s.empty_cells ) < 1 ): 
                s.nextChoice()
                continue

            # if none of the above, then we need to backtrack to a cell that was previously iterated
            # first, restore the current cell...
            s.history.remove( s.current_cell ) # ...by removing it from history
            s.empty_cells.add( s.current_cell ) # ...adding back to the empty queue
            del s.choices[ s.current_cell ] # ...scrapping all choices
            s.current_choice = 0
            s.setCell( s.current_cell, s.current_choice ) # ...and blanking out the cell

            # ...and then, backtrack to a previous cell
            while True:
                s.iterations_backtrack += 1

                if len( s.history ) < 1:
                    print( "(B) Sudoku cannot be solved!" )
                    return False

                s.current_cell = s.history[ -1 ] # after getting the previous cell, do not recalculate all possible choices because we will lose the information about has been tried so far

                if len( s.choices[ s.current_cell ] ) < 1: # backtrack until a cell is found that still has at least one unexplored choice...
                    s.history.remove( s.current_cell )
                    s.empty_cells.add( s.current_cell )
                    s.current_choice = 0
                    del s.choices[ s.current_cell ]
                    s.setCell( s.current_cell, s.current_choice )
                    continue

                # ...and when such cell is found, iterate it
                s.nextChoice()
                break # and break out from the backtrack iteration but will return to the main iteration

この記事のように世界で最も難しい数独を使用した通話の例 http://www.telegraph.co.uk/news/science/science-news/9359579/Worlds-hardest-sudoku-can-you-crack-it .html

hardest_sudoku = [
    [8,0,0,0,0,0,0,0,0],
    [0,0,3,6,0,0,0,0,0],
    [0,7,0,0,9,0,2,0,0],
    [0,5,0,0,0,7,0,0,0],
    [0,0,0,0,4,5,7,0,0],
    [0,0,0,1,0,0,0,3,0],
    [0,0,1,0,0,0,0,6,8],
    [0,0,8,5,0,0,0,1,0],
    [0,9,0,0,0,0,4,0,0]]

mySudoku = Sudoku( hardest_sudoku )
start = time.time()
mySudoku.solve( "A", "0", time.time(), False )
print( "solved in {} seconds".format( time.time() - start ) )

そして、出力例は:

Sudoku has been solved!
search space is 9586591201964851200000000000000000000
empty cells: 60, iterations: 49559, backtrack iterations: 49498
[8, 1, 2, 7, 5, 3, 6, 4, 9]
[9, 4, 3, 6, 8, 2, 1, 7, 5]
[6, 7, 5, 4, 9, 1, 2, 8, 3]
[1, 5, 4, 2, 3, 7, 8, 9, 6]
[3, 6, 9, 8, 4, 5, 7, 2, 1]
[2, 8, 7, 1, 6, 9, 5, 3, 4]
[5, 2, 1, 9, 7, 4, 3, 6, 8]
[4, 3, 8, 5, 2, 6, 9, 1, 7]
[7, 9, 6, 3, 1, 8, 4, 5, 2]
solved in 1.1600663661956787 seconds
6
svinec

これはハリの答えに基づいたはるかに速い解決策です。基本的な違いは、値が割り当てられていないセルに可能な値のセットを保持することです。したがって、新しい値を試すときは、有効な値のみを試し、この選択が数独の残りの部分で何を意味するかを伝えます。伝播ステップでは、各セルの有効な値のセットから、行、列、または同じブロックに既に表示されている値を削除します。セットに数値が1つだけ残っている場合、位置(セル)にその値が必要であることがわかります。

この方法は、前方チェックと先読みと呼ばれます( http://ktiml.mff.cuni.cz/~bartak/constraints/propagation.html )。

以下の実装には1回の反復(solveの呼び出し)が必要ですが、hariの実装には487が必要です。もちろん、私のコードは少し長くなっています。伝播方法も最適ではありません。

import sys
from copy import deepcopy

def output(a):
    sys.stdout.write(str(a))

N = 9

field = [[5,1,7,6,0,0,0,3,4],
         [2,8,9,0,0,4,0,0,0],
         [3,4,6,2,0,5,0,9,0],
         [6,0,2,0,0,0,0,1,0],
         [0,3,8,0,0,6,0,4,7],
         [0,0,0,0,0,0,0,0,0],
         [0,9,0,0,0,0,0,7,8],
         [7,0,3,4,0,0,5,6,0],
         [0,0,0,0,0,0,0,0,0]]

def print_field(field):
    if not field:
        output("No solution")
        return
    for i in range(N):
        for j in range(N):
            cell = field[i][j]
            if cell == 0 or isinstance(cell, set):
                output('.')
            else:
                output(cell)
            if (j + 1) % 3 == 0 and j < 8:
                output(' |')

            if j != 8:
                output(' ')
        output('\n')
        if (i + 1) % 3 == 0 and i < 8:
            output("- - - + - - - + - - -\n")

def read(field):
    """ Read field into state (replace 0 with set of possible values) """

    state = deepcopy(field)
    for i in range(N):
        for j in range(N):
            cell = state[i][j]
            if cell == 0:
                state[i][j] = set(range(1,10))

    return state

state = read(field)


def done(state):
    """ Are we done? """

    for row in state:
        for cell in row:
            if isinstance(cell, set):
                return False
    return True


def propagate_step(state):
    """
    Propagate one step.

    @return:  A two-Tuple that says whether the configuration
              is solvable and whether the propagation changed
              the state.
    """

            new_units = False

    # propagate row rule
    for i in range(N):
        row = state[i]
        values = set([x for x in row if not isinstance(x, set)])
        for j in range(N):
            if isinstance(state[i][j], set):
                state[i][j] -= values
                if len(state[i][j]) == 1:
                    val = state[i][j].pop()
                    state[i][j] = val
                    values.add(val)
                    new_units = True
                Elif len(state[i][j]) == 0:
                    return False, None

    # propagate column rule
    for j in range(N):
        column = [state[x][j] for x in range(N)]
        values = set([x for x in column if not isinstance(x, set)])
        for i in range(N):
            if isinstance(state[i][j], set):
                state[i][j] -= values
                if len(state[i][j]) == 1:
                    val = state[i][j].pop()
                    state[i][j] = val
                    values.add(val)
                    new_units = True
                Elif len(state[i][j]) == 0:
                    return False, None

    # propagate cell rule
    for x in range(3):
        for y in range(3):
            values = set()
            for i in range(3 * x, 3 * x + 3):
                for j in range(3 * y, 3 * y + 3):
                    cell = state[i][j]
                    if not isinstance(cell, set):
                        values.add(cell)
            for i in range(3 * x, 3 * x + 3):
                for j in range(3 * y, 3 * y + 3):
                    if isinstance(state[i][j], set):
                        state[i][j] -= values
                        if len(state[i][j]) == 1:
                            val = state[i][j].pop()
                            state[i][j] = val
                            values.add(val)
                            new_units = True
                        Elif len(state[i][j]) == 0:
                            return False, None

    return True, new_units

def propagate(state):
    """ Propagate until we reach a fixpoint """
    while True:
        solvable, new_unit = propagate_step(state)
        if not solvable:
            return False
        if not new_unit:
            return True


def solve(state):
    """ Solve sudoku """

    solvable = propagate(state)

    if not solvable:
        return None

    if done(state):
        return state

    for i in range(N):
        for j in range(N):
            cell = state[i][j]
            if isinstance(cell, set):
                for value in cell:
                    new_state = deepcopy(state)
                    new_state[i][j] = value
                    solved = solve(new_state)
                    if solved is not None:
                        return solved
                return None

print_field(solve(state))
6
dominik

私は簡単なものを解決する簡単なプログラムを書きました。スペースと数値を含む単なるマトリックスであるファイルから入力を受け取りました。それを解決するためのデータ構造は、ビットマスクの9行9列のマトリックスでした。ビットマスクは、特定の位置でまだ可能な数字を指定します。ファイルから数値を入力すると、各既知の場所の隣にあるすべての行/列の数値が減ります。これが完了すると、マトリックスを繰り返し処理し、可能な数を減らします。各場所に残っているオプションが1つしかない場合は、これで完了です。しかし、さらに作業が必要ないくつかの数独があります。これらの場合は、ブルートフォースを使用できます。機能する組み合わせが見つかるまで、残りの可能なすべての組み合わせを試してください。

4
Sebastiaan M

完全なコードを書くつもりはありませんが、私は数日前に数独ソルバーを行いました。私はそれが常にそれを解決するわけではないことを発見しました(彼らが新聞を持っているときに人々がすることは不完全です!)が、今私はそれを行う方法を知っていると思います。

  • セットアップ:正方形ごとに、許可された数値を示す各数値のフラグのセットがあります。
  • 取り消し線:電車の中で人々が紙の上で解決しているように、既知の数に繰り返し取り消し線を引くことができます。数字が1つしかない正方形が残っていると、別の取り消し線が引かれます。これにより、パズル全体が解決されるか、トリガーが不足します。これは前回失速した場所です。
  • 順列:わずか9です! = 9つの数値を配置するための362880の方法は、最新のシステムで簡単に事前計算できます。すべての行、列、および3x3の正方形は、これらの順列の1つでなければなりません。そこにたくさんの数字が入ったら、取り消し線でしたことを行うことができます。各行/列/ 3x3について、9の1/9に線を引くことができます!番号が1つの場合は順列、2の場合は1 /(8 * 9)などになります。
  • 相互置換:これで、潜在的な置換のセットを含む行と列の束ができました。しかし、もう1つの制約があります。行を設定すると、列と3x3は大幅に削減されます。ここからツリー検索を実行して、解決策を見つけることができます。
0
Carlos

バックトラッキングを使用して同じアルゴリズムを実現する短い試み:

def solve(sudoku):
    #using recursion and backtracking, here we go.
    empties = [(i,j) for i in range(9) for j in range(9) if sudoku[i][j] == 0]
    predict = lambda i, j: set(range(1,10))-set([sudoku[i][j]])-set([sudoku[y+range(1,10,3)[i//3]][x+range(1,10,3)[j//3]] for y in (-1,0,1) for x in (-1,0,1)])-set(sudoku[i])-set(list(Zip(*sudoku))[j])
    if len(empties)==0:return True
    gap = next(iter(empties))
    predictions = predict(*gap)
    for i in predictions:
        sudoku[gap[0]][gap[1]] = i
        if solve(sudoku):return True
        sudoku[gap[0]][gap[1]] = 0
    return False
0
Ahmed4end

私は遅れていることを知っていますが、これは私のバージョンです:

board = [
    [8, 0, 0, 0, 0, 0, 0, 0, 0],
    [0, 0, 3, 6, 0, 0, 0, 0, 0],
    [0, 7, 0, 0, 9, 0, 2, 0, 0],
    [0, 5, 0, 0, 0, 7, 0, 0, 0],
    [0, 0, 0, 0, 4, 5, 7, 0, 0],
    [0, 0, 0, 1, 0, 0, 0, 3, 0],
    [0, 0, 1, 0, 0, 0, 0, 6, 8],
    [0, 0, 8, 5, 0, 0, 0, 1, 0],
    [0, 9, 0, 0, 0, 0, 4, 0, 0]
]


def solve(bo):
    find = find_empty(bo)
    if not find:  # if find is None or False
        return True
    else:
        row, col = find

    for num in range(1, 10):
        if valid(bo, num, (row, col)):
            bo[row][col] = num

            if solve(bo):
                return True

            bo[row][col] = 0

    return False


def valid(bo, num, pos):

    # Check row
    for i in range(len(bo[0])):
        if bo[pos[0]][i] == num and pos[1] != i:
            return False

    # Check column
    for i in range(len(bo)):
        if bo[i][pos[1]] == num and pos[0] != i:
            return False

    # Check box
    box_x = pos[1] // 3
    box_y = pos[0] // 3

    for i in range(box_y*3, box_y*3 + 3):
        for j in range(box_x*3, box_x*3 + 3):
            if bo[i][j] == num and (i, j) != pos:
                return False

    return True


def print_board(bo):
    for i in range(len(bo)):
        if i % 3 == 0:
            if i == 0:
                print(" ┎─────────┰─────────┰─────────┒")
            else:
                print(" ┠─────────╂─────────╂─────────┨")

        for j in range(len(bo[0])):
            if j % 3 == 0:
                print(" ┃ ", end=" ")

            if j == 8:
                print(bo[i][j], " ┃")
            else:
                print(bo[i][j], end=" ")

    print(" ┖─────────┸─────────┸─────────┚")


def find_empty(bo):
    for i in range(len(bo)):
        for j in range(len(bo[0])):
            if bo[i][j] == 0:
                return i, j  # row, column

    return None


print_board(board)
print('\n--------------------------------------\n')
solve(board)
print_board(board)

バックトラッキングを使用します。しかし、私はコード化していません。それは Tech With Tim's です。そのリストには、世界で最も難しい数独が含まれています。タイミング関数を実装することにより、時間は次のようになります。

===========================
[Finished in 2.838 seconds]
===========================

しかし、次のような単純な数独パズルでは:

board = [
    [7, 8, 0, 4, 0, 0, 1, 2, 0],
    [6, 0, 0, 0, 7, 5, 0, 0, 9],
    [0, 0, 0, 6, 0, 1, 0, 7, 8],
    [0, 0, 7, 0, 4, 0, 2, 6, 0],
    [0, 0, 1, 0, 5, 0, 9, 3, 0],
    [9, 0, 4, 0, 6, 0, 0, 0, 5],
    [0, 7, 0, 3, 0, 0, 0, 1, 2],
    [1, 2, 0, 0, 0, 7, 4, 0, 0],
    [0, 4, 9, 2, 0, 6, 0, 0, 7]
]

結果は:

===========================
[Finished in 0.011 seconds]
===========================

かなり速いと言えます。

0