この質問では、このプロジェクトを参考にしています。
https://automating-gis-processes.github.io/site/master/notebooks/L3/nearest-neighbor-faster.html
2つのGeoDataFrameがあります。
建物:
name geometry
0 None POINT (24.85584 60.20727)
1 Uimastadion POINT (24.93045 60.18882)
2 None POINT (24.95113 60.16994)
3 Hartwall Arena POINT (24.92918 60.20570)
バス停:
stop_name stop_lat stop_lon stop_id geometry
0 Ritarihuone 60.169460 24.956670 1010102 POINT (24.95667 60.16946)
1 Kirkkokatu 60.171270 24.956570 1010103 POINT (24.95657 60.17127)
2 Kirkkokatu 60.170293 24.956721 1010104 POINT (24.95672 60.17029)
3 Vironkatu 60.172580 24.956554 1010105 POINT (24.95655 60.17258)
申し込み後
sklearn.neighborsインポートBallTree
from sklearn.neighbors import BallTree
import numpy as np
def get_nearest(src_points, candidates, k_neighbors=1):
"""Find nearest neighbors for all source points from a set of candidate points"""
# Create tree from the candidate points
tree = BallTree(candidates, leaf_size=15, metric='haversine')
# Find closest points and distances
distances, indices = tree.query(src_points, k=k_neighbors)
# Transpose to get distances and indices into arrays
distances = distances.transpose()
indices = indices.transpose()
# Get closest indices and distances (i.e. array at index 0)
# note: for the second closest points, you would take index 1, etc.
closest = indices[0]
closest_dist = distances[0]
# Return indices and distances
return (closest, closest_dist)
def nearest_neighbor(left_gdf, right_gdf, return_dist=False):
"""
For each point in left_gdf, find closest point in right GeoDataFrame and return them.
NOTICE: Assumes that the input Points are in WGS84 projection (lat/lon).
"""
left_geom_col = left_gdf.geometry.name
right_geom_col = right_gdf.geometry.name
# Ensure that index in right gdf is formed of sequential numbers
right = right_gdf.copy().reset_index(drop=True)
# Parse coordinates from points and insert them into a numpy array as RADIANS
left_radians = np.array(left_gdf[left_geom_col].apply(lambda geom: (geom.x * np.pi / 180, geom.y * np.pi / 180)).to_list())
right_radians = np.array(right[right_geom_col].apply(lambda geom: (geom.x * np.pi / 180, geom.y * np.pi / 180)).to_list())
# Find the nearest points
# -----------------------
# closest ==> index in right_gdf that corresponds to the closest point
# dist ==> distance between the nearest neighbors (in meters)
closest, dist = get_nearest(src_points=left_radians, candidates=right_radians)
# Return points from right GeoDataFrame that are closest to points in left GeoDataFrame
closest_points = right.loc[closest]
# Ensure that the index corresponds the one in left_gdf
closest_points = closest_points.reset_index(drop=True)
# Add distance if requested
if return_dist:
# Convert to meters from radians
earth_radius = 6371000 # meters
closest_points['distance'] = dist * earth_radius
return closest_points
closest_stops = nearest_neighbor(buildings, stops, return_dist=True)
各建物インデックスについて、最も近いバス停までの距離を取得します。
stop_name stop_lat stop_lon stop_id geometry distance
0 Muusantori 60.207490 24.857450 1304138 POINT (24.85745 60.20749) 180.521584
1 Eläintarha 60.192490 24.930840 1171120 POINT (24.93084 60.19249) 372.665221
2 Senaatintori 60.169010 24.950460 1020450 POINT (24.95046 60.16901) 119.425777
3 Veturitie 60.206610 24.929680 1174112 POINT (24.92968 60.20661) 106.762619
各建物のすべてのバス停(複数の場合があります)が250メートル未満の距離にあるソリューションを探しています。
ご協力ありがとうございます。
250m以内で最も近いバス停を取得するには:
filtered_by_distance = closest_stops[closest_stops.distance < 250]
result = buildings.join(filtered_by_distance)
半径内のすべてのストップには、 BallTree.query_radius を使用する必要があります。ただし、メートルをラジアンに変換する必要があります。