web-dev-qa-db-ja.com

条件に基づいてpandas dataframeの列を削除する方法は?

pandas DataFrameがあり、その中に多くのNAN値があります。

どのようにしてnumber_of_na_values > 2000

私はそれをそのようにしようとしました:

toRemove = set()
naNumbersPerColumn = df.isnull().sum()
for i in naNumbersPerColumn.index:
    if(naNumbersPerColumn[i]>2000):
         toRemove.add(i)
for i in toRemove:
    df.drop(i, axis=1, inplace=True)

それを行うよりエレガントな方法はありますか?

10

各列に指定されたnanの数以下の列を保持する別の方法を次に示します。

max_number_of_nas = 3000
df = df.loc[:, (df.isnull().sum(axis=0) <= max_number_of_nas)]

私のテストでは、これは、私がテストした場合にJianxun Liによって提案された列の削除方法よりもわずかに速いようです。

np.random.seed(0)
df = pd.DataFrame(np.random.randn(10000,5), columns=list('ABCDE'))
df[df < 0] = np.nan
max_number_of_nans = 5010

%timeit c = df.loc[:, (df.isnull().sum(axis=0) <= max_number_of_nans)]
>> 1000 loops, best of 3: 1.76 ms per loop

%%timeit c = df.drop(df.columns[df.apply(lambda col: col.isnull().sum() > max_number_of_nans)], axis=1)
>> 100 loops, best of 3: 2.04 ms per loop


np.random.seed(0)
df = pd.DataFrame(np.random.randn(10, 5), columns=list('ABCDE'))
df[df < 0] = np.nan
max_number_of_nans = 5

%timeit c = df.loc[:, (df.isnull().sum(axis=0) <= max_number_of_nans)]
>> 1000 loops, best of 3: 662 µs per loop

%%timeit c = df.drop(df.columns[df.apply(lambda col: col.isnull().sum() > max_number_of_nans)], axis=1)
>> 1000 loops, best of 3: 1.08 ms per loop
11
n8yoder

同じロジックですが、すべてを1行にまとめます。

import pandas as pd
import numpy as np

# artificial data
# ====================================
np.random.seed(0)
df = pd.DataFrame(np.random.randn(10,5), columns=list('ABCDE'))
df[df < 0] = np.nan

        A       B       C       D       E
0  1.7641  0.4002  0.9787  2.2409  1.8676
1     NaN  0.9501     NaN     NaN  0.4106
2  0.1440  1.4543  0.7610  0.1217  0.4439
3  0.3337  1.4941     NaN  0.3131     NaN
4     NaN  0.6536  0.8644     NaN  2.2698
5     NaN  0.0458     NaN  1.5328  1.4694
6  0.1549  0.3782     NaN     NaN     NaN
7  0.1563  1.2303  1.2024     NaN     NaN
8     NaN     NaN     NaN  1.9508     NaN
9     NaN     NaN  0.7775     NaN     NaN

# processing: drop columns with no. of NaN > 3
# ====================================
df.drop(df.columns[df.apply(lambda col: col.isnull().sum() > 3)], axis=1)


Out[183]:
        B
0  0.4002
1  0.9501
2  1.4543
3  1.4941
4  0.6536
5  0.0458
6  0.3782
7  1.2303
8     NaN
9     NaN
5
Jianxun Li