web-dev-qa-db-ja.com

複数のDataFrame列でget_dummiesを実行していますか?

複数のDataFrame列で、単一の列を予期し、複数の列を返すget_dummiesなどの関数を慣用的に実行するにはどうすればよいですか?

28
Emre

pandasバージョン0.15.0、pd.get_dummiesはDataFrameを直接処理できます(それ以前は、単一のシリーズのみを処理できました。回避策については以下を参照してください)。

In [1]: df = DataFrame({'A': ['a', 'b', 'a'], 'B': ['c', 'c', 'b'],
   ...:                 'C': [1, 2, 3]})

In [2]: df
Out[2]:
   A  B  C
0  a  c  1
1  b  c  2
2  a  b  3

In [3]: pd.get_dummies(df)
Out[3]:
   C  A_a  A_b  B_b  B_c
0  1    1    0    0    1
1  2    0    1    0    1
2  3    1    0    1    0

pandas <0.15.0の回避策

列ごとに個別に実行し、結果を連結できます。

In [111]: df
Out[111]: 
   A  B
0  a  x
1  a  y
2  b  z
3  b  x
4  c  x
5  a  y
6  b  y
7  c  z

In [112]: pd.concat([pd.get_dummies(df[col]) for col in df], axis=1, keys=df.columns)
Out[112]: 
   A        B      
   a  b  c  x  y  z
0  1  0  0  1  0  0
1  1  0  0  0  1  0
2  0  1  0  0  0  1
3  0  1  0  1  0  0
4  0  0  1  1  0  0
5  1  0  0  0  1  0
6  0  1  0  0  1  0
7  0  0  1  0  0  1

マルチインデックス列が必要ない場合は、keys=.. concat関数呼び出しから。

40
joris

pandas 0.19を使用すると、1行で実行できます。

pd.get_dummies(data=df, columns=['A', 'B'])

Columnsは、One Hot Encodingを実行する場所を指定します。

>>> df
   A  B  C
0  a  c  1
1  b  c  2
2  a  b  3

>>> pd.get_dummies(data=df, columns=['A', 'B'])
   C  A_a  A_b  B_b  B_c
0  1  1.0  0.0  0.0  1.0
1  2  0.0  1.0  0.0  1.0
2  3  1.0  0.0  1.0  0.0
36
bold

誰かがもっと賢いものを持っているかもしれませんが、ここに2つのアプローチがあります。 dfという名前のデータフレームがあり、ダミーが必要な列 'Name'および 'Year'があるとします。

まず、単純に列を繰り返し処理するのはそれほど悪くありません。

In [93]: for column in ['Name', 'Year']:
    ...:     dummies = pd.get_dummies(df[column])
    ...:     df[dummies.columns] = dummies

別のアイデアは、 patsy パッケージを使用することです。これは、Rタイプの式からデータ行列を構築するように設計されています。

In [94]: patsy.dmatrix(' ~ C(Name) + C(Year)', df, return_type="dataframe")
5
chrisb

質問を理解していない限り、columns引数を渡すことで get_dummies でネイティブにサポートされます。

1
sapo_cosmico