web-dev-qa-db-ja.com

複数のgroupbyの後、インデックスから列にデータを移動する方法pandas

私は次のpandasデータフレーム:

dfalph.head()

token    year    uses  books
  386   xanthos  1830    3     3
  387   xanthos  1840    1     1
  388   xanthos  1840    2     2
  389   xanthos  1868    2     2
  390   xanthos  1875    1     1

重複するtokenyearsで行を集約します:

dfalph = dfalph[['token','year','uses','books']].groupby(['token', 'year']).agg([np.sum])
dfalph.columns = dfalph.columns.droplevel(1)
dfalph.head()

               uses  books
token    year       
xanthos  1830    3     3
         1840    3     3
         1867    2     2
         1868    2     2
         1875    1     1

インデックスに「トークン」フィールドと「年」フィールドを含める代わりに、それらを列に返し、整数インデックスを持ちたいと思います。

31
prooffreader

メソッド#1:reset_index()

>>> g
              uses  books
               sum    sum
token   year             
xanthos 1830     3      3
        1840     3      3
        1868     2      2
        1875     1      1

[4 rows x 2 columns]
>>> g = g.reset_index()
>>> g
     token  year  uses  books
                   sum    sum
0  xanthos  1830     3      3
1  xanthos  1840     3      3
2  xanthos  1868     2      2
3  xanthos  1875     1      1

[4 rows x 4 columns]

方法#2:as_index=Falseを使用して、そもそもインデックスを作成しないでください

>>> g = dfalph[['token', 'year', 'uses', 'books']].groupby(['token', 'year'], as_index=False).sum()
>>> g
     token  year  uses  books
0  xanthos  1830     3      3
1  xanthos  1840     3      3
2  xanthos  1868     2      2
3  xanthos  1875     1      1

[4 rows x 4 columns]
58
DSM

私は受け入れられた答えを延期します。これを行うには2つの方法がありますが、これらは必ずしも同じ出力になるとは限りません。特にGroupergroupbyを使用している場合

  • _index=False_
  • reset_index()

df

_+---------+---------+-------------+------------+
| column1 | column2 | column_date | column_sum |
+---------+---------+-------------+------------+
| A       | M       | 26-10-2018  |          2 |
| B       | M       | 28-10-2018  |          3 |
| A       | M       | 30-10-2018  |          6 |
| B       | M       | 01-11-2018  |          3 |
| C       | N       | 03-11-2018  |          4 |
+---------+---------+-------------+------------+
_

同じようには機能しません。

_df = df.groupby(
    by=[
        'column1',
        'column2',
        pd.Grouper(key='column_date', freq='M')
    ],
    as_index=False
).sum()
_

上記は与えます

_+---------+---------+------------+
| column1 | column2 | column_sum |
+---------+---------+------------+
| A       | M       |          8 |
| B       | M       |          3 |
| B       | M       |          3 |
| C       | N       |          4 |
+---------+---------+------------+
_

一方、

_df = df.groupby(
    by=[
        'column1',
        'column2',
        pd.Grouper(key='column_date', freq='M')
    ]
).sum().reset_index()
_

あげる

_+---------+---------+-------------+------------+
| column1 | column2 | column_date | column_sum |
+---------+---------+-------------+------------+
| A       | M       | 31-10-2018  |          8 |
| B       | M       | 31-10-2018  |          3 |
| B       | M       | 30-11-2018  |          3 |
| C       | N       | 30-11-2018  |          4 |
+---------+---------+-------------+------------+
_
5
Adarsh Madrecha

drop=Trueを追加する必要があります:

df.reset_index(drop=True)

df = df.groupby(
    by=[
        'column1',
        'column2',
        pd.Grouper(key='column_date', freq='M')
    ]
).sum().reset_index(drop=True)
0
user1809802