同じ形状の多数のデータフレームを生成しています。それらを相互に比較したいと思います。データフレーム全体で平均値と中央値を取得できるようにしたい。
Source.0 Source.1 Source.2 Source.3
cluster
0 0.001182 0.184535 0.814230 0.000054
1 0.000001 0.160490 0.839508 0.000001
2 0.000001 0.173829 0.826114 0.000055
3 0.000432 0.180065 0.819502 0.000001
4 0.000152 0.157041 0.842694 0.000113
5 0.000183 0.174142 0.825674 0.000001
6 0.000001 0.151556 0.848405 0.000038
7 0.000771 0.177583 0.821645 0.000001
8 0.000001 0.202059 0.797939 0.000001
9 0.000025 0.189537 0.810410 0.000028
10 0.006142 0.003041 0.493912 0.496905
11 0.003739 0.002367 0.514216 0.479678
12 0.002334 0.001517 0.529041 0.467108
13 0.003458 0.000001 0.532265 0.464276
14 0.000405 0.005655 0.527576 0.466364
15 0.002557 0.003233 0.507954 0.486256
16 0.004161 0.000001 0.491271 0.504568
17 0.001364 0.001330 0.528311 0.468996
18 0.002886 0.000001 0.506392 0.490721
19 0.001823 0.002498 0.509620 0.486059
Source.0 Source.1 Source.2 Source.3
cluster
0 0.000001 0.197108 0.802495 0.000396
1 0.000001 0.157860 0.842076 0.000063
2 0.094956 0.203057 0.701662 0.000325
3 0.000001 0.181948 0.817841 0.000210
4 0.000003 0.169680 0.830316 0.000001
5 0.000362 0.177194 0.822443 0.000001
6 0.000001 0.146807 0.852924 0.000268
7 0.001087 0.178994 0.819564 0.000354
8 0.000001 0.202182 0.797333 0.000485
9 0.000348 0.181399 0.818252 0.000001
10 0.003050 0.000247 0.506777 0.489926
11 0.004420 0.000001 0.513927 0.481652
12 0.006488 0.001396 0.527197 0.464919
13 0.001510 0.000001 0.525987 0.472502
14 0.000001 0.000001 0.520737 0.479261
15 0.000001 0.001765 0.515658 0.482575
16 0.000001 0.000001 0.492550 0.507448
17 0.002855 0.000199 0.526535 0.470411
18 0.000001 0.001952 0.498303 0.499744
19 0.001232 0.000001 0.506612 0.492155
次に、これら2つのデータフレームの平均を取得します。
これを行う最も簡単な方法は何ですか?
明確にするために、すべてのデータフレームのインデックスと列がまったく同じ場合に、特定のセルごとに平均値を取得します。
したがって、上記の例では、[0,Source.0]
の平均は(0.001182 + 0.000001)/ 2 = 0.0005915になります。
2つのデータフレームに同じ列があると仮定すると、それらを連結して、連結されたフレームの要約統計量を計算できます。
_import numpy as np
import pandas as pd
# some random data frames
df1 = pd.DataFrame(dict(x=np.random.randn(100), y=np.random.randint(0, 5, 100)))
df2 = pd.DataFrame(dict(x=np.random.randn(100), y=np.random.randint(0, 5, 100)))
# concatenate them
df_concat = pd.concat((df1, df2))
print df_concat.mean()
# x -0.163044
# y 2.120000
# dtype: float64
print df_concat.median()
# x -0.192037
# y 2.000000
# dtype: float64
_
2つのデータセットで同じインデックスを持つ行の各セット全体の統計情報を計算する場合、.groupby()
を使用して行インデックスでデータをグループ化し、平均、中央値などを適用できます。
_by_row_index = df_concat.groupby(df_concat.index)
df_means = by_row_index.mean()
print df_means.head()
# x y
# 0 -0.850794 1.5
# 1 0.159038 1.5
# 2 0.083278 1.0
# 3 -0.540336 0.5
# 4 0.390954 3.5
_
このメソッドは、データフレームの行数が等しくない場合でも機能します。2つのデータフレームのいずれかで特定の行インデックスが欠落している場合、平均/中央値は単一の既存行で計算されます。
私は@ALi_mに似ていますが、行と列の組み合わせごとに1つの平均が必要なため、異なる結論を下します。
df1 = pd.DataFrame(dict(x=np.random.randn(100), y=np.random.randint(0, 5, 100)))
df2 = pd.DataFrame(dict(x=np.random.randn(100), y=np.random.randint(0, 5, 100)))
df = pd.concat([df1, df2])
foo = df.groupby(level=1).mean()
foo.head()
x y
0 0.841282 2.5
1 0.716749 1.0
2 -0.551903 2.5
3 1.240736 1.5
4 1.227109 2.0
各フレームにラベルを割り当てるだけで、group
を呼び出し、次にconcat
とgroupby
を呼び出して、必要な処理を実行できます。
In [57]: df = DataFrame(np.random.randn(10, 4), columns=list('abcd'))
In [58]: df2 = df.copy()
In [59]: dfs = [df, df2]
In [60]: df
Out[60]:
a b c d
0 0.1959 0.1260 0.1464 0.1631
1 0.9344 -1.8154 1.4529 -0.6334
2 0.0390 0.4810 1.1779 -1.1799
3 0.3542 0.3819 -2.0895 0.8877
4 -2.2898 -1.0585 0.8083 -0.2126
5 0.3727 -0.6867 -1.3440 -1.4849
6 -1.1785 0.0885 1.0945 -1.6271
7 -1.7169 0.3760 -1.4078 0.8994
8 0.0508 0.4891 0.0274 -0.6369
9 -0.7019 1.0425 -0.5476 -0.5143
In [61]: for i, d in enumerate(dfs):
....: d['group'] = i
....:
In [62]: dfs[0]
Out[62]:
a b c d group
0 0.1959 0.1260 0.1464 0.1631 0
1 0.9344 -1.8154 1.4529 -0.6334 0
2 0.0390 0.4810 1.1779 -1.1799 0
3 0.3542 0.3819 -2.0895 0.8877 0
4 -2.2898 -1.0585 0.8083 -0.2126 0
5 0.3727 -0.6867 -1.3440 -1.4849 0
6 -1.1785 0.0885 1.0945 -1.6271 0
7 -1.7169 0.3760 -1.4078 0.8994 0
8 0.0508 0.4891 0.0274 -0.6369 0
9 -0.7019 1.0425 -0.5476 -0.5143 0
In [63]: final = pd.concat(dfs, ignore_index=True)
In [64]: final
Out[64]:
a b c d group
0 0.1959 0.1260 0.1464 0.1631 0
1 0.9344 -1.8154 1.4529 -0.6334 0
2 0.0390 0.4810 1.1779 -1.1799 0
3 0.3542 0.3819 -2.0895 0.8877 0
4 -2.2898 -1.0585 0.8083 -0.2126 0
5 0.3727 -0.6867 -1.3440 -1.4849 0
6 -1.1785 0.0885 1.0945 -1.6271 0
.. ... ... ... ... ...
13 0.3542 0.3819 -2.0895 0.8877 1
14 -2.2898 -1.0585 0.8083 -0.2126 1
15 0.3727 -0.6867 -1.3440 -1.4849 1
16 -1.1785 0.0885 1.0945 -1.6271 1
17 -1.7169 0.3760 -1.4078 0.8994 1
18 0.0508 0.4891 0.0274 -0.6369 1
19 -0.7019 1.0425 -0.5476 -0.5143 1
[20 rows x 5 columns]
In [65]: final.groupby('group').mean()
Out[65]:
a b c d
group
0 -0.394 -0.0576 -0.0682 -0.4339
1 -0.394 -0.0576 -0.0682 -0.4339
ここでは、各group
は同じですが、それはdf == df2
。
または、フレームをPanel
にスローできます:
In [69]: df = DataFrame(np.random.randn(10, 4), columns=list('abcd'))
In [70]: df2 = DataFrame(np.random.randn(10, 4), columns=list('abcd'))
In [71]: panel = pd.Panel({0: df, 1: df2})
In [72]: panel
Out[72]:
<class 'pandas.core.panel.Panel'>
Dimensions: 2 (items) x 10 (major_axis) x 4 (minor_axis)
Items axis: 0 to 1
Major_axis axis: 0 to 9
Minor_axis axis: a to d
In [73]: panel.mean()
Out[73]:
0 1
a 0.3839 0.2956
b 0.1855 -0.3164
c -0.1167 -0.0627
d -0.2338 -0.0450
Niklasのコメントによると、質問に対する解決策はpanel.mean(axis=0)
です。
より完全な例として:
import pandas as pd
import numpy as np
dfs = {}
nrows = 4
ncols = 3
for i in range(4):
dfs[i] = pd.DataFrame(np.arange(i, nrows*ncols+i).reshape(nrows, ncols),
columns=list('abc'))
print('DF{i}:\n{df}\n'.format(i=i, df=dfs[i]))
panel = pd.Panel(dfs)
print('Mean of stacked DFs:\n{df}'.format(df=panel.mean(axis=0)))
次の出力が得られます。
DF0:
a b c
0 0 1 2
1 3 4 5
2 6 7 8
3 9 10 11
DF1:
a b c
0 1 2 3
1 4 5 6
2 7 8 9
3 10 11 12
DF2:
a b c
0 2 3 4
1 5 6 7
2 8 9 10
3 11 12 13
DF3:
a b c
0 3 4 5
1 6 7 8
2 9 10 11
3 12 13 14
Mean of stacked DFs:
a b c
0 1.5 2.5 3.5
1 4.5 5.5 6.5
2 7.5 8.5 9.5
3 10.5 11.5 12.5
解決策は、最初に両方のデータフレームをアンスタックしてマルチインデックス(クラスター、コルネーム)を持つシリーズです...その後、シリーズの加算と除算を使用して、インデックスの操作を自動的に行い、最後にそれらをアンスタックできます...ここにありますコード...
averages = (df1.stack()+df2.stack())/2
averages = averages.unstack()
これで完了です...
または、より一般的な目的のために...
dfs = [df1,df2]
averages = pd.concat([each.stack() for each in dfs],axis=1)\
.apply(lambda x:x.mean(),axis=1)\
.unstack()